

Procedural Generation
in Godot

Learn to Generate Enjoyable Content
for Your Games

Christopher Pitt

Procedural Generation in Godot: Learn to Generate Enjoyable Content for
Your Games

ISBN-13 (pbk): 978-1-4842-8794-1 ISBN-13 (electronic): 978-1-4842-8795-8
https://doi.org/10.1007/978-1-4842-8795-8

Copyright © 2023 by Christopher Pitt

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Spandana Chatterjee
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Luemen Rutkowski on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

Christopher Pitt
Durbanville, South Africa

https://doi.org/10.1007/978-1-4842-8795-8

This book is dedicated to my patient wife, my enthusiastic kids,
and my supportive friends.

v

Table of Contents

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Introduction ���xv

Chapter 1: Hand-Crafted Content vs� Procedural Content��� 1

Example: Limbo ��� 1

Procedural Content Generation ��� 3

Example: Oxygen Not Included�� 3

How Much of Each? �� 5

Example: Diablo 2 ��� 6

Where We Go from Here �� 9

Chapter 2: Generating with Nodes �� 11

Setting Up a New Project �� 11

Loading Experiments �� 17

Creating Nodes via Script ��� 22

Randomizing Behavior �� 24

Creating Realism with Randomization �� 25

Summary��� 27

Chapter 3: Generating with Tiles �� 29

Creating Tile Sets �� 29

Modifying Tiles with Code ��� 33

Using Terrains ��� 35

Using Terrains with Code �� 39

Summary��� 40

https://doi.org/10.1007/978-1-4842-8795-8_1
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_1#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_2
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_2#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_3
https://doi.org/10.1007/978-1-4842-8795-8_3#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_3#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_3#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_3#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_3#Sec5

vi

Chapter 4: Recreating Sokoban �� 41

Creating Levels ��� 42

Selecting a Level ��� 50

Switching Screens �� 52

Globals and Other Mischief�� 57

Drawing Levels ��� 58

Drawing Nodes �� 63

Moving the Player ��� 67

Avoiding Closed Doors ��� 69

Moving Crates �� 70

Winning a Level ��� 72

Summary��� 77

Chapter 5: Designing Levels in Pixel Art��� 79

Creating Pixel Art �� 79

Converting Pixel Art to a Grid �� 80

Flipping Layouts �� 83

Combining with Nodes and Tile Maps ��� 84

Summary��� 85

Chapter 6: Creating a Seeding System ��� 87

A New Experiment �� 88

Generating Easier Seeds ��� 90

Summary��� 93

Chapter 7: Recreating Bouncy Cars �� 95

Getting Set Up ��� 96

Creating a Seed Screen �� 102

Generating Maps ��� 105

Drawing the Map ��� 112

Drawing the Players �� 116

Calculating Waypoints ��� 122

The Right Way to Do This ��� 123

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8795-8_4
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec7
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec8
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec9
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec10
https://doi.org/10.1007/978-1-4842-8795-8_4#Sec11
https://doi.org/10.1007/978-1-4842-8795-8_5
https://doi.org/10.1007/978-1-4842-8795-8_5#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_5#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_5#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_5#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_5#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_6
https://doi.org/10.1007/978-1-4842-8795-8_6#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_6#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_6#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_7
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec7

vii

Moving the Players�� 125

Warning the Players About Directions ��� 129

Summary��� 131

Chapter 8: Navigating in Generated Levels ��� 133

Getting Set Up ��� 133

Adding Basic Movement ��� 134

Adding Navigation to Tile Maps ��� 136

Adding Obstacle Nodes ��� 139

Merging Polygons ��� 144

Summary��� 149

Chapter 9: Collective Nodes in Generated Maps ��� 151

Refreshing Our Memory �� 151

Selecting the Appropriate Node(s) �� 154

Summary��� 155

Chapter 10: Recreating Invasion �� 157

Getting Set Up ��� 158

Screens�� 158

Transitions ��� 164

Adding Shaders ��� 167

Planning Room Generation �� 169

Tile Map ��� 172

Exits ��� 173

Sanctuaries ��� 174

Arrows ��� 174

Spawns �� 174

The Remaining Nodes�� 174

Generating One Room ��� 175

Generating Many Rooms ��� 184

Hiding Invalid Arrows and Sanctuaries �� 191

Moving Around in the Rooms �� 192

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8795-8_7#Sec8
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec9
https://doi.org/10.1007/978-1-4842-8795-8_7#Sec10
https://doi.org/10.1007/978-1-4842-8795-8_8
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_8#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_9
https://doi.org/10.1007/978-1-4842-8795-8_9#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_9#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_9#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_10
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec7
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec8
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec9
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec10
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec11
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec12
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec13
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec14
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec15

viii

Transitioning to Neighboring Rooms ��� 195

Spawning Survivors �� 199

Rescuing Survivors ��� 202

Taking Things Further ��� 207

Summary��� 208

Chapter 11: Paths and Path Followers �� 209

Defining Paths ��� 209

Moving Along the Path �� 210

Moving Between Paths ��� 213

Summary��� 222

Chapter 12: Interaction Systems �� 223

Managing Interactions �� 223

How This Could Apply to Invasion �� 229

Having Conversations ��� 230

Dialog in Invasion �� 233

Summary��� 236

Chapter 13: Recreating This War of Mine ��� 237

This War of Mine ��� 237

Getting Set Up ��� 239

Generating Levels ��� 241

Selecting Starting Characters ��� 243

Interacting with Objects in the World �� 244

Ending the Day �� 245

Deciding When to End the Game ��� 245

Unlocking New Levels and Characters�� 245

A Note About Mobile Game Development ��� 246

Taking It One Step at a Time ��� 247

Thank You for Reading This Far��� 247

 Index ��� 249

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8795-8_10#Sec16
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec17
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec18
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec19
https://doi.org/10.1007/978-1-4842-8795-8_10#Sec20
https://doi.org/10.1007/978-1-4842-8795-8_11
https://doi.org/10.1007/978-1-4842-8795-8_11#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_11#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_11#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_11#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_12
https://doi.org/10.1007/978-1-4842-8795-8_12#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_12#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_12#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_12#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_12#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_13
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec1
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec2
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec3
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec4
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec5
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec6
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec7
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec8
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec9
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec10
https://doi.org/10.1007/978-1-4842-8795-8_13#Sec11

ix

About the Author

Christopher Pitt is a developer living in South Africa. He has published a bunch of indie

games, many of which use procedural content generation. Most of his games have been

built in the Godot engine. He also likes to bake sweet things and build wood things.

xi

About the Technical Reviewer

Over the past 15 years, Christopher Bray has spent his career creating enterprise

applications for hotel chains, giant analytics firms, and one of the largest businesses in

the food service industry. Now, he's developing video games using Godot.

xiii

Acknowledgments

I acknowledge the folks at Apress for their tireless work and the opportunity to write this

book. I’d also like to thank Christopher for his encouragement over the years and his

valuable perspective as technical reviewer.

xv

Introduction

This book is about the practical steps you can take to create games that include

procedural content generation. It’s been a hard six months of writing, but the games I

built leading up to it were instrumental in my understanding and teaching of procedural

content generation. I won’t bore you with the details, except to say that the most

polished games I have released are heavily featured in these pages.

You won’t find a lot of complicated math, or theory about different kinds of noise

generation functions. I have kept things simple and useful. If you follow along, you’ll

have built four games by the time you’re finished. I think that’s one of the best parts

about this book.

It’s wonderful to look back on these last six months and see how the content of this

book has evolved. I started writing it with Godot 4 alpha 1 and finished writing it with

Godot 4 beta 1. A lot changed during that time, so I went back through and re- built

everything in beta 1 so that I was sure it would work for you. There might be small changes

to the engine before launch, but the worst is behind us.

It was important for me to demonstrate this topic using Godot 4 because it’s the

future. I want this book to be useful to you for a long time. If you struggle with anything

in it, please reach out to me.

You can find the source code for the experiments at https://github.com/

assertchris/book-experiments

You can find the source code for each game at

• https://github.com/assertchris/book-sokoban

• https://github.com/assertchris/book-bouncy-cars

• https://github.com/assertchris/book-invasion

https://github.com/assertchris/book-experiments
https://github.com/assertchris/book-experiments
https://github.com/assertchris/book-sokoban
https://github.com/assertchris/book-bouncy-cars
https://github.com/assertchris/book-invasion

xvi

I mostly follow popular GDScript syntax conventions. Feel free to deviate from these

as you like; but be careful to update the code where you’ve chosen different node, script,

class, or file names. My habits have also changed while writing the book; but things are

mostly consistent following the most recent set of edits. All source code used in the book

can be downloaded from http://github.com/apress/procedural-generation-godot.

I suggest you learn the basics of GDScript before attempting to master this topic.

GDQuest has a brilliant introductory application you can try: https://gdquest.github.

io/learn-gdscript. I explain things as simply as possible, but you’ll have an easier time

if you already know some programming concepts.

InTroduCTIon

http://github.com/apress/procedural-generation-godot
https://gdquest.github.io/learn-gdscript
https://gdquest.github.io/learn-gdscript

1

CHAPTER 1

Hand-Crafted Content vs.
Procedural Content
There are many popular games that place the player in sprawling worlds. Examples of

this are World of Warcraft and Red Dead Redemption. An interesting thing about these

games is their hand-crafted content. A team of designers have worked to create every hill

and valley. A computer made none of it via an algorithm.

Hand-crafted content is the kind of content that is intentionally made. This could be

someone drawing a game character, or creating a 3D model of a car. It also includes the

design of the game world, or smaller sections contained in it.

In this book, we’re going to focus mostly on designing the game world. If you’ve ever

played a strategy game, the concept of a map will be familiar to you. It’s the space in

which you build your buildings and command your units.

There are other games that build on this concept, though it might not be

immediately clear. Each of Super Mario Bros’ worlds is a kind of map. The race tracks in

Need for Speed are maps. If it’s a space you, as the player, can move around in, you can

think of it as a map.

There’s a level of quality in hand-crafted content that only human hands can

achieve. A predictable map also leads to environments and events that feel more natural

to the player.

Let’s take a closer look at a game built on hand-crafted maps.

 Example: Limbo
Limbo is a puzzle-platformer game, released in 2010. You wake up, alone, and need to

solve puzzles to understand what is happening to you. It’s particularly memorable for its

black-and-white color palette and sound design.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_1

https://doi.org/10.1007/978-1-4842-8795-8_1#DOI

2

Sailing in Limbo

Limbo is full of interesting puzzles, each more difficult than the last. There are

stretches of gameplay, where the player must navigate the world in limited time. This

combines with stretches where the player can relax and sightsee.

This is possible due to the order of sections of the map and predictable layout of each

section. Every playthrough is similar, and later playthroughs are easier if you recall the

solutions to puzzles.

Running from a spider in Limbo

Chapter 1 hand-Crafted Content vs. proCedural Content

3

 Procedural Content Generation
When algorithms generate content, instead of a designer, we call this procedural

generation. All procedural generation begins with a designer creating content, but the

algorithm takes over at some point.

This content can take many forms:

• Basic layouts that the algorithm can combine and rearrange

• The functions that create these arrangements

• Checks to ensure the generated content is acceptable

• Functions that spawn player characters, nonplayable characters, and

enemies into the generated areas

These will be the main focus of this book. This isn't an exhaustive list of things

considered procedural generation, but it's a start.

Generated content has the potential to create limitless replayability for your games.

A solo game developer can delegate content creation to a machine and focus on other

parts of their game. The flip side to this is that generated content can also be messy,

imprecise, and buggy.

It’ll also be harder to design the pacing, events, and triggers of your game well. You’ll

need to balance these concerns to create a robust set of tools.

Let’s take a look at a game that demonstrates balanced procedural content

generation.

 Example: Oxygen Not Included
Oxygen Not Included is a colony management simulator, released in 2017. You start off

managing three colonists, with varying skills and characteristics. I enjoy the humorous

interactions they have with each other and the perilous situations they can find

themselves in.

Chapter 1 hand-Crafted Content vs. proCedural Content

4

Supervising in Oxygen Not Included

There are two main kinds of starting data that Oxygen Not Included uses to generate

its maps from:

• The starting area, where everything is safe and there’s a bit of water

and oxygen

• The configuration of a handful of structures that later aid the player

in expansion

The rest is a rich generation algorithm that builds beautiful worlds to play in. Every

playthrough is different. That is, unless you recreate the exact same world on purpose.

Chapter 1 hand-Crafted Content vs. proCedural Content

5

Selecting a seed in Oxygen Not Included

Newer versions of the game have added more world options, but it’s still generated

content at the core. When you start a new game, you’re faced with an array of questions:

• “How will this new map look?”

• “What geysers will I have around me?”

• “Will this map be easy or hard to survive in?”

This is what makes the game so enjoyable and replayable. It’s all thanks to the robust

content generation algorithm.

 How Much of Each?
Perhaps you’re wondering how much content you should design and how much you

should generate. It’s a good question, without an easy answer.

Crafted content will usually be higher quality than generated content, but it’s also

more expensive to make. If you’re building something on your own, you want to figure

out how much of it you can generate.

Same thing if you’re entering a game jam.

We’ve already seen a good example of how you could mix them in Oxygen Not

Included. There will be sections of your maps that you want to be safe, or to host a

special event. You should craft these to avoid complexity.

Chapter 1 hand-Crafted Content vs. proCedural Content

6

You could generate the rest, or you could even use crafted sections combined in

random ways. There are many examples of this last approach.

 Example: Diablo 2
Diablo 2 is an action role-playing game, released in 2000. It’s a story-rich game where

you are a warrior of light, battling an army of darkness. It’s memorable for its dark

atmosphere and gothic aesthetic.

The remastered version was released in 2021.

Slaying demons in Diablo 2: Resurrected

Diablo 2 has a mix of crafted and generated content. It takes place in five main

locations of a fictional world.

Each location (called act) has its own look and feel. The acts are also broken up into a

set order of smaller sections (or zones), each with their own visual traits.

For example, act two has a desert theme. You begin your adventuring alongside

sand dunes and decaying limestone structures. One of the zones takes you deep into an

underground tunnel system. Another takes you into the city’s dark sewer system.

Chapter 1 hand-Crafted Content vs. proCedural Content

7

Exploring the deserts of act two in Diablo 2: Resurrected

These areas are full of interesting crafted assets, randomly placed and weighted.

There’s only one entrance to that underground tunnel system, but you’ll have to discover

where that is each time you load the game.

The game has a fast-travel mechanic, which you access through randomly placed

teleport platforms. Finding these, and the entrances to special story areas, is a core part

of the game’s mechanics.

Yet each act starts you off in a crafted safe area. These are always the same, so you

can quickly navigate them on your frequent trips “back to town.”

Chapter 1 hand-Crafted Content vs. proCedural Content

8

Starting (safe) zone of act five in Diablo 2: Resurrected

The typical structure of each act and zone varies, but here is a non-exhaustive list of

zones in act one:

Crafted and generated areas of act one in Diablo 2: Resurrected

Chapter 1 hand-Crafted Content vs. proCedural Content

9

There are definitely more generated sections of the game, but the crafted sections

help to connect them together. They are the setting for important events in the story.

Most of the enemies you’ll encounter are randomly generated, but each type belongs

to a specific zone or act. You encounter simple skeletons and zombies in act one,

lightning beetles in act two, tree ents in act three, etc.

Some zones have a high chance to spawn special enemies. In the Stony Field of

act one, you will always encounter a special enemy called Rakanishu. He guards the

entrance to Tristram and has a lightning attack.

Each act has a handful of these special enemies, as well as a final boss. The final

bosses are also in crafted locations. Generated loot drops from slain enemies, with a

small selection of crafted items, called legendaries.

 Where We Go from Here
We’re going to build a toolset that balances crafted and generated content. That means

we’ll create some crafted assets and combine them in ways that can lead to random

configurations.

We’ll learn how to build explicit seeding systems, as seen in Oxygen Not Included, so

that friends can share experiences with us.

We’ll learn about things like tile maps and nodes and how to make them interact.

We’ll learn about how to inspect generated maps to be able to figure out how to answer

questions like

• "What is the right direction to move it?"

• "How do I get over to that part of the generated map?"

• "Where is a good place to spawn enemies?"

We’ll learn how to make click-to-move, keyboard-based, and path-based movement.

As we learn more tricks, we’ll recreate games from different genres. By the time

you're done reading this book, you'll have made four different 2D games.

Buckle up!

Chapter 1 hand-Crafted Content vs. proCedural Content

11

CHAPTER 2

Generating with Nodes
In the previous chapter, we talked about why you’d want to generate content rather than

craft it. It’s time to get into the code of things.

In this chapter, we’re going to create a fresh project where we can experiment. We’ll

follow this up by creating nodes via code and randomizing their behavior.

My version of Godot might differ from yours since I’m writing this a few months

before you read it. I’m using an early version of Godot 4, so as long as you’re using Godot

4, we should be good. You can find installation instructions on the Godot website.

 Setting Up a New Project
Launch Godot 4. If it’s the first time, you’ll see a message asking if you’d like to import an

example project. We’ll ignore this and create a blank project:

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_2

https://godotengine.org/download
https://doi.org/10.1007/978-1-4842-8795-8_2#DOI

12

Opening Godot 4 for the first time

Clicking Cancel ➤ New Project will show a dialog asking for details about your project:

Creating a new project

Chapter 2 GeneratinG with nodes

13

There’s not a lot we need to change here. Give your project a name, and set version

control metadata to None. Whatever rendering engine you pick will work for the

purposes of this project.

Version control is a good thing, but it’s not in the scope of this book. If you’re familiar

with Git, then feel free to use that. I won’t be going into detail about how it works or how

to set it up.

Clicking Create & Edit will take you to the default editor view. I usually do the same

things when starting a new game to create a solid base:

• I start by creating a base Screen scene, with a MarginContainer as a

main node.

• I inherit this scene to create screens, including one in which the

gameplay happens.

• I move automatically created configuration files and icons to folders

that represent their types.

Here’s what that Screen scene looks like:

Creating the base Screen scene

I prefix my class names so that there’s no risk of their name conflicting with a built-in

class. It’s rare for this to happen, but a prefix avoids the issue altogether.

Chapter 2 GeneratinG with nodes

14

If we switch to the 2D editor tab, we can select the MarginContainer node and

expand it to fill all the available screen space. This means that all our screens will fill the

available screen space.

Expanding the MarginContainer node

Since this class has a name, we can inherit from it without a path to the file in our

code. Let me show you what a subclass of GameScreen looks like:

Chapter 2 GeneratinG with nodes

15

Extending a class

I recommend spending some time looking through the editor settings to get it set up

the way you like to use it. I sometimes increase the editor interface size, but you can do

what feels natural for you.

To get to this point, I selected the Scene ➤ New Inherited Scene menu option and

selected the screen.tscn file I created as the parent scene. After selecting and renaming

the Screen node, I went to Script ➤ New Script. That shows this dialog:

Chapter 2 GeneratinG with nodes

16

Creating a new script

We saw this dialog when we attached a script to the Screen node. This time, we

should change where it says MarginContainer to GameScreen. Clicking Create will make

the new script. You should see both files (play_screen.tscn and play_screen.gd) in the

file explorer, on the left side of the screen.

I like to use MarginContainer as the main node because some mobile devices have

camera notches. This requires that we resize the game so that it isn’t hidden behind a

notch. We can code the MarginContainer to add padding after the game starts.

When you click the play button, at the top right of the screen, Godot will ask you to

set a default scene. Pick the PlayScreen as the default scene:

Chapter 2 GeneratinG with nodes

17

Configuring the default scene

 Loading Experiments
We’re going to use a single experiment project for most of the code we’re going to write.

We need a way to load different experiments as we work on them. One way to achieve

this is to put each experiment in a Node2D node and center that in the play screen.

Let’s add a CenterContainer and Control to the MarginContainer:

Chapter 2 GeneratinG with nodes

18

Centering experiments in the PlayScreen

Now, we can make each experiment a Node2D scene, starting with the base

GameExperiment:

Creating the GameExperiment class

Chapter 2 GeneratinG with nodes

19

We can extend this for our first experiment, which is going to be about randomizing

nodes. We can call this the NodesExperiment:

Creating the NodesExperiment class

I’ve also created a 200 × 200 ColorRect background and a 200 × 200

GridContainer, into which we’re going to create 25 child nodes. We should set the

GridContainer node to have 5 columns.

The Node2D experiment node will be in the center of the Anchor node, so we should

set the size of the background and grid to -100 × -100.

There are a few ways we could bring this experiment into PlayScreen:

• load("res://nodes/experiments/nodes-experiment.gd")

• preload("res://nodes/experiments/nodes-experiment.gd")

But both of these suffer from an annoying problem. In fact, it’s the same problem

we’ve tried to avoid with custom class names. When files move, those strings aren’t

updated.

Chapter 2 GeneratinG with nodes

20

The safest way to reference other nodes is by class name, or exported variables.

Here's what I mean:

This is from nodes/screens/play_screen.gd

extends GameScreen

@export var experiment_scene : PackedScene

@onready var _anchor := $Center/Anchor

func _ready() -> void:

 var experiment = experiment_scene.instantiate()

 _anchor.add_child(experiment)

Godot 4 uses @export and @onready to hint that these variables need special

handling:

• @export variables are available through the property inspector.

• @onready variables resolve after the parent node is ready.

The instantiate method creates a new instance of the experiment scene so that we

can add it to the scene.

_anchor starts with an underscore because I want to hint that it is private to this

script. The underscore doesn't affect functionality. It's a pattern that is popular in the

Python and GDScript programming languages.

When you go back to the visual editor and select PlayScreen, you should see the

variable on the right side of the screen. We call this area the Property Inspector:

Finding the exported variable

Chapter 2 GeneratinG with nodes

21

Clicking on Empty will show a couple of ways to pick the experiment. We can drag

the NodesExperiment scene onto the drop-down, and it would link them; but this might

not be practical in a huge project. A better option is to click Empty ➤ Quick Load.

This will display a searchable list of PackedScene nodes to select from:

Selecting the NodesExperiment scene from a searchable list

Once selected and saved, you can click the play button and see the experiment as the

game launches:

Chapter 2 GeneratinG with nodes

22

Launching the experiment

This a nice, reusable system for packaging and loading our future experiments. We’re

going to have another eight of them; so we’re definitely going to get some mileage out of

this system.

 Creating Nodes via Script
Let’s create a new scene, which we’ll randomize the behavior of. You can imagine this as

a part of the game’s environment, a decoration, like a tree or rock. We’re going to keep

things simple and use a ColorRect:

Chapter 2 GeneratinG with nodes

23

Creating the doodad class

ColorRect is a good node type to choose here because the experiment will show it

in a GridContainer. It’s not required for all your decorations, unless you’re also going to

display them in a similar way.

Set Layout ➤ Transform ➤ Size to 40 × 40 and Layout ➤ Container Sizing to

expand × expand. Then, we need to “import” it in a similar way to what we did for the

experiments:

This is from nodes/experiments/nodes_experiments.gd

extends GameExperiment

@export var doodad_scene : PackedScene

@onready var _items := $Items

func _ready() -> void:

 for i in range(25):

 var doodad = doodad_scene.instantiate()

 _items.add_child(doodad)

Chapter 2 GeneratinG with nodes

24

Now, when running the game, we should see a grid of Doodad classes:

Testing the grid rendering

If you’re using a Sprite2D for your decoration, you can swap the GridContainer for

position or global_position attributes. We’ll get around to doing that in later chapters.

For now, what’s more important is to talk about how we add randomization to this

Doodad class.

 Randomizing Behavior
There are a couple types of randomization we could use:

• Seeded – Generation with a fixed seed

• Unseeded – Generation based on a random seed

Both are a kind of seeded generation, but the difference is whether we want to know

and control the seed or not. For now, we’re not going to control the seed. Chapter 6 is

when we’ll start doing that.

Chapter 2 GeneratinG with nodes

https://doi.org/10.1007/978-1-4842-8795-8_6

25

Let’s create a script on the Doodad class and randomize the colors of the ColorRect:

This is from nodes/experiments/nodes_experiment/doodad.gd

extends ColorRect

func _ready() -> void:

 color = Color(

 randf_range(0.0, 1.0),

 randf_range(0.0, 1.0),

 randf_range(0.0, 1.0)

)

Godot 4 automatically calls the randomize function, so we don’t need to call

it ourselves. This function seeds the built-in random number generator, so it’s not

outputting predictable values.

The randf_range(min, max) function returns a random float value between

minimum and maximum values.

There are many rand* functions to choose from:

• randf

• randf_range

• randi

• randi_range

• randfn

The randf function is shorthand for randf_range(0.0, 1.0). The randi_

range(min, max) function is shorthand for randi() % 100, where min is 0 and max is 99.

If that’s a lot, don’t worry. We’re mostly going to deal in integers; and we’ll see plenty of

examples that will help clear things up.

 Creating Realism with Randomization
So, we can randomize the colors of the squares; but how do we use this knowledge to do

something more useful. Say we wanted to make the squares green (for trees) or brown

(for rocks) or transparent. We could use randf* or randi* to generate a number and then

do different things based on what that number is.

Chapter 2 GeneratinG with nodes

26

Something like this:

This is from nodes/experiments/nodes_experiment/doodad.gd

extends ColorRect

func _ready() -> void:

 var number = randf()

 if number > 0.9:

 color = Color.DARK_GREEN

 elif number > 0.7:

 color = Color.SADDLE_BROWN

 else:

 color = Color.TRANSPARENT

We start by generating a random number between 0.0 and 1.0. Then we compare it

and only make the ColorRect green when the number is above 0.9. This creates a one-

in- ten chance that the ColorRect will be green. If that one-in-ten chance fails, there’s a

three-in-ten chance that ColorRect will be brown.

Trees and rocks with randomization

Chapter 2 GeneratinG with nodes

27

We can make subtle changes to this, but the general idea will remain the same for all

the node randomization we do in the rest of the book.

 Summary
In this chapter, we learned about how to create new nodes and randomize values in

Godot 4. We set up a new project and covered some habits I generally recommend for

structuring project code.

Take some time to experiment with the rand functions. See if you can figure out how

to use different thresholds for your random values.

Try to use Sprite nodes, showing and hiding as appropriate.

In the following chapter, we're going to take these techniques further with tile sets.

Chapter 2 GeneratinG with nodes

29

CHAPTER 3

Generating with Tiles
In the previous chapter, we created and manipulated nodes using scripts. It’s one of two

popular ways to manipulate the visuals of a game. In this chapter, we’re going to look at

the other, which is creating and manipulating tiles via scripts.

We need to start in the visual editor, where we’ll learn how to set up tiles and terrains.

These are useful for hand-crafted content, and mastering them will save a ton of time

and code.

 Creating Tile Sets
Tile maps are visual areas made out of little squares or tiles. Take a look at the

following image:

This is from https://kenney.nl/assets/bit-pack

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_3

https://kenney.nl/assets/bit-pack
https://doi.org/10.1007/978-1-4842-8795-8_3#DOI

30

This is a tile sheet. It’s a collection of small tiles packed in a way that makes them

easier to use when creating maps for games. There are many tiles in this tile sheet that

are perfect for creating a map. Let’s create a new experiment that uses them!

Download and extract the asset pack, and copy colored.png into the images folder,

in the experiment project. Then, create an inherited scene, based on the GameExperiment

class. Follow this up by adding a new node, below the root node, called a TileMap:

Creating a TileMap

Attach a script to the new scene, like we did in the previous chapter. This script

should inherit from the GameExperiment class. TileMap nodes are the mechanism for

how we draw tiles. They need a TileSet resource, which is what gets drawn in them. We

can share tile sets between many TileMap nodes, but that's an exercise for later.

Click on the Empty drop-down next to Tile Set and select New TileSet. You’ll see a

grid appear in the 2D editor.

Chapter 3 GeneratinG with tiles

31

Editing the new TileSet

This grid is where we’ll draw the tiles, but we first need to define tiles in the tile set.

I found this part to be a bit tricky when I first tried it. The TileSet editor button at the

bottom of the screen wasn’t showing up for me. If this happens for you, select another

node, like TilesExperiment, and click back on the TileMap node. You should now see

the TileSet tab at the bottom of the screen.

The image we’re using has 16 × 16 pixel tiles, so we don’t have to change the default

tile size for the TileMap node. If we wanted to, we could click on TileSet and change Tile

Size values that show up in the property inspector.

Let's create a new Atlas by clicking the plus button and selecting Atlas. Then, click

Texture ➤ Quick Load. Select colored.png. Godot will ask if you want it to automatically

create tiles in the atlas, to which you can say no:

Chapter 3 GeneratinG with tiles

32

Selecting a texture

The image we're using has gaps in between the tiles. Adjust the Separation values

to account for these gaps. Values of 1 × 1 should do the trick. Highlight a few tiles for

us to use:

Highlighting wall tiles

Now, we can draw on the grid with a tile selected. When we want to change the tile

we’re drawing with, we can select a new one from the set that we highlighted:

Chapter 3 GeneratinG with tiles

33

Drawing tiles by hand

 Modifying Tiles with Code
We can also draw tiles on the grid using code. Let’s create a script for the

TilesExperiment node and set these tiles with it:

This is from nodes/experiments/tiles_experiment.gd

extends GameExperiment

@onready var _tile_map := $TileMap as TileMap

func _ready() -> void:

 _tile_map.clear()

Chapter 3 GeneratinG with tiles

34

 var tiles := [

 [Vector2(0, -2), Vector2(19, 0)],

 [Vector2(1, -2), Vector2(19, 0)],

 [Vector2(2, -2), Vector2(20, 0)],

 [Vector2(2, -1), Vector2(20, 1)],

 [Vector2(2, 0), Vector2(20, 1)],

]

 for tile in tiles:

 _tile_map.set_cell(0, tile[0], 2, tile[1])

There are quite a few methods available on a TileMap node, but we only need three

for now. The first is to clear tiles that we have already drawn on the grid. This could be

tiles drawn via other scripts or drawn by hand.

The second method is to draw the intended tile in the intended cell location. These

numbers can be confusing, so let’s break it down.

The first Vector2 in each row of the tiles array is the grid position of the cell we

want to draw on. At the center of the screen (or origin), the grid starts at 0,0.

Drawing tiles from the origin

This means a cell on the top left of the one pictured is going to have the grid position

of -1, -1.

Chapter 3 GeneratinG with tiles

35

The second Vector2 in each row of tiles is the location in the atlas of the tile that we

want to draw. If you mouse over the tile, you’ll see this number pop up:

Hovering over a tile to see the atlas coordinate

In the set_cell method call, we’re telling the tile map we want to draw the cells on

layer 0. We’re telling it that the tile the source is 2.

You can see the source when you hover over a tile in the tile map inspector. Source is

the numeric identifier for the atlas of tiles we’re drawing from.

 Using Terrains
Drawing large configurations of tiles can be a tedious process, especially when the

different tiles represent walls facing a different direction.

Godot has a feature called terrains that can do a lot of this work for us. To set up

a new terrain, go to the TileMap node properties and click on the TileSet to go to the

TileSet's properties:

Chapter 3 GeneratinG with tiles

36

Drilling down to TileSet properties

Then, find the terrains tab and add a new terrain:

Chapter 3 GeneratinG with tiles

37

Adding a new terrain

Select Match Corners and Sides as a Terrain Set ➤ Mode. Next, go to the TileSet tab

and click the paint brush icon. You’ll see Paint Properties with the choice of what you

want to paint:

Chapter 3 GeneratinG with tiles

38

Painting terrains

Picking which terrain to add tiles

Pick the terrain and color in the parts of each tile that should connect to each other:

Painting bit masks

Chapter 3 GeneratinG with tiles

39

You might want to deselect the bit you've selected in error. Change Terrain ➤ Walls

to Terrain ➤ No terrain and left click on the bit you want to remove. We can go back to

TileMap ➤ Terrains ➤ Terrain Set 0 ➤ walls, and paint with Connect mode selected:

Drawing tiles with terrains

 Using Terrains with Code
Scripting terrains is actually easier than scripting individual tiles. Instead of calling set_

cell for each cell we want to paint, we can create an array of cells to paint and tell the tile

map which terrain to use:

Chapter 3 GeneratinG with tiles

40

This is from nodes/experiments/tiles_experiment.gd

var cells : Array[Vector2i] = [

 Vector2i(-1, 0),

 Vector2i(0, 0),

 Vector2i(-1, 1),

 Vector2i(0, 1),

]

_tile_map.set_cells_terrain_connect(0, cells, 0, 0, false)

Drawing terrains with code

 Summary
In this chapter, we learned about TileMap, TileSet, and the terrain interfaces. We saw

how to draw tiles into the cell grid by hand and also via script. We’re going to use these

techniques in the following chapter when we build our first game!

Chapter 3 GeneratinG with tiles

41

CHAPTER 4

Recreating Sokoban
We’re well on our way to learning how to generate great procedural content for our

games. It’s a good time to cement what we’ve learned so far by using those skills to

make a game.

In the previous two chapters, we learned about how to make and use nodes and tile

sets. We’re going to use both of those to recreate a classic game, called Sokoban.

Sokoban is actually a whole genre of games, but I want us to focus on a simple

implementation of the version published around 1980.

Pushing crates onto dots

The game is about pushing crates on to dots. It’s a puzzle game, where the order of

moves is important.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_4

https://doi.org/10.1007/978-1-4842-8795-8_4#DOI

42

We’re not going to make a game that is ready for release, though you’re welcome to

do that if you like. Instead, I want us to achieve the following few goals:

• Creating a level selection menu

• Designing two or three levels, representing the layout of each level in

an array

• Using these arrays to draw tiles and nodes

• Implementing player movement

• Allowing the player to move boxes

• Detecting when the boxes are over the dots to signal a win state

Let’s get started.

 Creating Levels
We can follow the same process we did when setting up the experiment project. After

creating the new project, we can create the following nodes and scripts:

 1. A template Screen node, with the corresponding GameScreen

class script

 2. A LevelSelectionScreen node, with a script that extends

GameScreen

 3. A PlayScreen node, with another script that extends GameScreen

Your folders and files should resemble this:

Chapter 4 reCreating Sokoban

43

Starting with three screens

Next, let’s think about how we want to design each level. It would be good for us to

have a template resource that defines a few types and properties common to each level.

We do this by creating a new folder and adding a new script to it:

Chapter 4 reCreating Sokoban

44

Creating new scripts

This script should inherit from the Resource class, and we can save it as level.gd:

Inheriting from Resource

Chapter 4 reCreating Sokoban

45

This class should have properties that describe each level. We can use enums (which

are lists of possible values) to define the kinds of objects we can draw:

This is from resources/levels/level.gd

extends Resource

class_name GameLevel

enum types {

 wall_top_left,

 wall_top,

 wall_top_right,

 wall_right,

 wall_bottom_right,

 wall_bottom,

 wall_bottom_left,

 wall_left,

 empty,

 player,

 crate,

 dot,

 door,

}

@export var name := "New level"

@export var width := 7

@export var layout : Array[types] = [

 types.wall_top_left, types.wall_top, types.wall_top, types.wall_top,

types.wall_top, types.wall_top, types.wall_top_right,

 types.wall_left, types.empty, types.empty, types.empty, types.empty,

types.empty, types.wall_right,

 types.wall_left, types.empty, types.empty, types.empty, types.empty,

types.empty, types.wall_right,

 types.wall_left, types.empty, types.empty, types.empty, types.empty,

types.empty, types.wall_right,

Chapter 4 reCreating Sokoban

46

 types.wall_left, types.empty, types.empty, types.empty, types.empty,

types.empty, types.wall_right,

 types.wall_left, types.empty, types.empty, types.empty, types.empty,

types.empty, types.wall_right,

 types.wall_bottom_left, types.wall_bottom, types.wall_bottom, types.

wall_bottom, types.wall_bottom, types.wall_bottom, types.wall_bottom_right,

]

Each level needs a name so that exported property makes sense to add. The couple

that follow it need some explanation, though. I want us to take a step back and think

about how levels can be build using algorithms.

The algorithm we need is one that reads level layouts from an array and draws on a

tile map or with nodes. That’s why each item in the layout array is a type of block, which

can represent a wall or a crate or even the player. width tells our drawing code how many

blocks are in each row of the layout.

This layout array depicts an empty room surrounded by walls. It’s an example to

show what kind of data we expect level designers to come up with. Custom resources like

this are useful to let us define a custom data type that we can reference in other nodes.

Instead of linking this script to a scene, we need to create instances of this custom

resource with the data values customized. We can right-click the resources/levels

folder and select the New Resource option:

Chapter 4 reCreating Sokoban

47

Creating a new resource in the file explorer

And we can find the custom resource in the list of possible resources to create by

searching for its name:

Chapter 4 reCreating Sokoban

48

Selecting our custom resource

This instance of our custom resource has properties we can set in the property

inspector. We can decide how many blocks wide each level will be and create an array of

block types that is a multiple of that Width. I’ve chosen to define a layout that is the same

size as the example – seven blocks wide and seven blocks high:

Chapter 4 reCreating Sokoban

49

Defining the layout of a level in blocks

It might be tricky to think of the layout in this way. I’d suggest, if you’re having

trouble, that you use a bit of grid paper to design the level before creating this resource.

Array indices for your 7 × 7 grid layouts

Chapter 4 reCreating Sokoban

50

Take some time to design two or three of these levels, and create their corresponding

resource files. We’ll need them in the next section.

 Selecting a Level
By now, we’ve created some levels and the placeholder for a level selection screen. Let’s

connect the two so that we can launch our levels from the level selection screen.

First, we’ll need to export a list of levels from our level selection screen and draw

buttons on the screen for each level. We can set up some nodes to make the layout of

this easier:

Layout nodes for easier button placement

We need to write a script that will load each configured level resource as a button

that we can use to start that level:

This is from nodes/screens/level_selection_screen.gd

extends GameScreen

@export var levels : Array[Resource]

@onready var _vbox := $CenterContainer/VBoxContainer

func _ready() -> void:

 for level in levels:

 var new_button = Button.new()

 new_button.text = level.name

Chapter 4 reCreating Sokoban

51

 new_button.connect("pressed", func():

 print("load level: " + level.name)

)

 _vbox.add_child(new_button)

We can export an array of the levels we’ve designed, so we can link them through the

property inspector. When the level selection screen loads, we loop through each of the

linked levels. We create a new button for each, adding it to the VBoxContainer we set up.

We can also define a lambda to execute when the player presses a button. Switch

back to the 2D tab, go to the property inspector, and link the levels you’ve designed:

Linking our levels

Now is a good time to launch the game to see if everything is working as expected.

Select the level selection screen as the default screen to load on startup, and click on the

buttons!

Chapter 4 reCreating Sokoban

52

Clicking all the buttons

If you don’t see any buttons, or they don’t print text to the console when you click on

them, then something’s wrong. Go back and look for syntax errors.

 Switching Screens
Changing screens can be a bit of a mission if you’ve never done it before. It’s a balance

between flexibility and simplicity. We want the mechanism we create and use to be

extensible, so we can add more screens without many changes to code. We also want the

functions we call to be simple to use.

A good way to achieve this is to store a lookup table of screens in a global Constants

class. Let's make a new folder and a new scene from a Node node:

Chapter 4 reCreating Sokoban

53

Creating a new Node scene

Selecting the main node of the new scene

Chapter 4 reCreating Sokoban

54

This is from nodes/globals/constants.gd

extends Node

class_name Types

enum screens {

 none,

 level_selection,

 play,

}

@export var level_selection_scene : PackedScene

@export var play_scene : PackedScene

@onready var screen_scenes := {

 screens.level_selection: level_selection_scene,

 screens.play: play_scene,

}

We can attach this script to the main node of a new scene file, which we’ll autoload

in a minute. This main node is where we can link the two scenes we’ve exported using

the property inspector.

Linking to our different screen scenes

Chapter 4 reCreating Sokoban

55

Linking them as exported properties makes it easy to replace the scenes or rename

the files, without breaking hard-coded paths in code. We can use these constants in

another global scene. This new scene remembers the current screen and swaps it

out with new screens. Create another Node scene, called Screens, and attach another

script to it:

This is from nodes/globals/screens.gd

extends Node

var root = null

var current_screen : Types.screens

var current_screen_node : GameScreen

var is_changing_screen := false

func _ready() -> void:

 root = get_tree().get_root()

 current_screen_node = root.get_children().back()

func change_screen(new_screen: Types.screens) -> void:

 if is_changing_screen:

 return

 is_changing_screen = true

 var new_screen_node : GameScreen = Constants.screen_scenes[new_screen].

instantiate()

 load_new_screen(new_screen_node, new_screen)

func load_new_screen(new_screen_node: GameScreen, new_screen: Types.

screens) -> void:

 current_screen_node.queue_free()

 root.add_child(new_screen_node)

 current_screen = new_screen

 current_screen_node = new_screen_node

 is_changing_screen = false

Chapter 4 reCreating Sokoban

56

We’ll call the change_screen method shortly. Before we do, we need one last global

scene. It needs to store the current level we intend to play so that the play screen can

draw the appropriate play space. Create yet another Node scene and attached script,

called Variables:

This is from nodes/globals/variables.gd

extends Node

var current_level : GameLevel

We need to autoload these three scenes by going to Project ➤ Project Settings ➤

Autoload:

Loading our globals

Chapter 4 reCreating Sokoban

57

To be super clear about the structure of these files, here is what my file explorer

looks like:

Globals in the file explorer

Instead of printing to the debug console; we can now store the desired level, and

change to the play screen:

This is from nodes/screens/level_selection_screen.gd

new_button.connect("pressed", func():

 Variables.current_level = level

 Screens.change_screen(Types.screens.play)

)

 Globals and Other Mischief
Before we move on, I want to talk a bit about globals in our code. Some people will tell

you to avoid autoloaded scenes because they can cause problems. I don’t think this

practice is as bad as they say.

The approach we’ve used is perfect for our needs, and we should continue to use

it. This book is about procedural content generation, and not about the perils of using

globals, after all.

The only other thing I want to mention is that we can’t refer to types defined in a

global to type-hint variables in another script. That’s why I gave the Constants script a

class name of Types.

Chapter 4 reCreating Sokoban

58

The following would have resulted in an error:

func change_screen(new_screen: Constants.screens) -> void:

…because Godot cannot verify the type of Constants.screens at compile time. We

can autoload a scene with one global name and reference its types using a different

class name.

It’s a trick I’ve only found useful in this situation. It might be cleaner to separate the

types out from the constants so that we autoload one and not the other, but I’m not going

to do that.

 Drawing Levels
Our play screen can use the current level data to draw the level’s tiles and nodes. I think

it would be fun to use another kenney.nl asset pack for this project. You can find this one

at https://kenney.nl/assets/sokoban:

Kenney's take on Sokoban sprites

Chapter 4 reCreating Sokoban

https://kenney.nl/
https://kenney.nl/assets/sokoban

59

Download and extract the asset pack, and copy Tilesheet/sokoban_tilesheet.png

into the project's images folder. Next, create a TileMap and a Node2D. You can even create

the TileSet resource using your knowledge from the previous chapter:

Setting the stage for drawing our levels

I typically change the default node names so they are more descriptive or less

verbose. In this case, I’ve chosen the following names:

• CenterContainer → Center

• Control → Stage

• TileMap → Tiles

• Node2D → Nodes

If your tiles are fuzzy after importing, set CanvasItem → Filter to Nearest. You'll also

need to adjust the tile size to 64 × 64 pixels, where I've highlighted.

by now, we’ve covered the basics of creating nodes and tile maps. i don’t want
to repeat too much of this. if you’re having trouble, check out the example project
code and refer to the previous chapters.

Chapter 4 reCreating Sokoban

60

We need to identify the atlas coordinates of each of the block types we care about

and store them in Constants. While we’re at it, we should move the levels' blocks

enum too:

This is from nodes/globals/constants.gd

enum blocks {

 wall_top_left,

 wall_top,

 wall_top_right,

 wall_right,

 wall_bottom_right,

 wall_bottom,

 wall_bottom_left,

 wall_left,

 empty,

 player,

 crate,

 dot,

 door,

}

const _wall_coordinates := Vector2i(8, 7)

const _door_coordinates := Vector2i(10, 0)

const tile_coordinates := {

 blocks.wall_top_left: _wall_coordinates,

 blocks.wall_top: _wall_coordinates,

 blocks.wall_top_right: _wall_coordinates,

 blocks.wall_right: _wall_coordinates,

 blocks.wall_bottom_right: _wall_coordinates,

 blocks.wall_bottom: _wall_coordinates,

 blocks.wall_bottom_left: _wall_coordinates,

 blocks.wall_left: _wall_coordinates,

 blocks.door: _door_coordinates,

}

This means our custom GameLevel resource must also change:

Chapter 4 reCreating Sokoban

61

This is from resources/levels/level.gd

extends Resource

class_name GameLevel

@export var name := "New level"

@export var width := 7

@export var layout : Array[Types.blocks] = [

 Types.blocks.wall_top_left, Types.blocks.wall_top, Types.blocks.wall_

top, Types.blocks.wall_top, Types.blocks.wall_top, Types.blocks.wall_top,

Types.blocks.wall_top_right,

 Types.blocks.wall_left, Types.blocks.empty, Types.blocks.empty, Types.

blocks.empty, Types.blocks.empty, Types.blocks.empty, Types.blocks.

wall_right,

 Types.blocks.wall_left, Types.blocks.empty, Types.blocks.empty, Types.

blocks.empty, Types.blocks.empty, Types.blocks.empty, Types.blocks.

wall_right,

 Types.blocks.wall_left, Types.blocks.empty, Types.blocks.empty, Types.

blocks.empty, Types.blocks.empty, Types.blocks.empty, Types.blocks.

wall_right,

 Types.blocks.wall_left, Types.blocks.empty, Types.blocks.empty, Types.

blocks.empty, Types.blocks.empty, Types.blocks.empty, Types.blocks.

wall_right,

 Types.blocks.wall_left, Types.blocks.empty, Types.blocks.empty, Types.

blocks.empty, Types.blocks.empty, Types.blocks.empty, Types.blocks.

wall_right,

 Types.blocks.wall_bottom_left, Types.blocks.wall_bottom, Types.blocks.

wall_bottom, Types.blocks.wall_bottom, Types.blocks.wall_bottom, Types.

blocks.wall_bottom, Types.blocks.wall_bottom_right,

]

You could delete the example array if you’re not keen on maintaining this long list of

block types. I like to keep these examples around so that it’s easier to figure out how to

code for the resource.

Chapter 4 reCreating Sokoban

62

You might be wondering why i have so many block types when i'm using the same
sprite for all of them. it would be simpler to have a single wall type, but that would
be less flexible. We could have used any number of tile sets that had different
sides and corners of walls; and this enum would account for them all. You're free
to simplify the code if the tile set you use doesn't have this level of detail.

We can use these new constants and atlas positions to set the blocks of our tile map

on the play screen:

This is from nodes/screens/play_screen.gd

extends GameScreen

@onready var _tiles := $Center/Stage/Tiles as TileMap

func _ready() -> void:

 var i := 0

 var level : GameLevel = Variables.current_level

 var half = floor(level.width / 2)

 var remainder = level.width % 2

 for y in range(-half - remainder, half):

 for x in range(-half - remainder, half):

 if Types.tile_coordinates.has(level.layout[i]):

 _tiles.set_cell(0, Vector2i(x, y), 0, Types.tile_

coordinates[level.layout[i]])

 i += 1

This is a strange loop we’re using. The tile map’s 0,0 coordinate is in the center of the

screen; so we want to set blocks on either side of it. If we started at 0,0, then the top-left

corner of each level would be in the center of the screen:

Chapter 4 reCreating Sokoban

63

Drawing blocks to the left and top of 0,0

 Drawing Nodes
Next, we need to create the various level nodes and draw them on the play screen:

 1. The player → CharacterBody2D

 2. The crates → CharacterBody2D

 3. The dots → Area2D

 4. The doors → Area2D

Chapter 4 reCreating Sokoban

64

Create each of these, with their own attached scripts, until your files look like this:

Level nodes

The sprite sheet we’ve been using to draw walls has visual indicators for all these. I’ve

given the scenes a CollisionShape2D and (except for the door node) a Sprite2D chosen

from the sprite sheet. Taking sprites from a sprite sheet can be tricky if you've never done

it before. Here are the steps I usually follow:

 1. Create the Sprite2D node

 2. Set Texture ➤ AtlasTexture

 3. Click Edit Region

 4. Change Snap Mode to Grid Snap

Chapter 4 reCreating Sokoban

65

 5. Change the Step values to the size of the sprite (64 × 64 pixels in

this case)

 6. Select the sprite

Selecting sprites from an AtlasTexture

The top-left corner of the sprites and collision shapes should be at 32 × 32 pixels so

that their top-left corners align with the top-left corner of each floor square. I’ve given

the scenes custom class names, so we can type-hint against them later on. For now, we

need to add them to Constants:

This is from nodes/globals/constants.gd

@export var crate_scene : PackedScene

@export var door_scene : PackedScene

@export var dot_scene : PackedScene

@export var player_scene : PackedScene

@onready var node_scenes := {

 blocks.crate: crate_scene,

 blocks.door: door_scene,

Chapter 4 reCreating Sokoban

66

 blocks.dot: dot_scene,

 blocks.player: player_scene,

}

Link these scenes in the property inspector so that we can use them in the play

screen code:

This is from nodes/screens/play_screen.gd

extends GameScreen

@onready var _tiles := $Center/Stage/Tiles as TileMap

@onready var _nodes := $Center/Stage/Nodes as Node2D

func _ready() -> void:

 var i := 0

 var level : GameLevel = Variables.current_level

 var half = floor(level.width / 2)

 var remainder = level.width % 2

 for y in range(-half - remainder, half):

 for x in range(-half - remainder, half):

 if Types.tile_coordinates.has(level.layout[i]):

 _tiles.set_cell(0, Vector2i(x, y), 0, Types.tile_

coordinates[level.layout[i]])

 if Constants.node_scenes.has(level.layout[i]):

 var new_node = Constants.node_scenes[level.layout[i]].

instantiate()

 _nodes.add_child(new_node)

 new_node.position = Vector2(x * 64, y * 64)

 i += 1

This new code is similar to the tile map code in terms of how we get the correct data

for the type of block. The differences are to do with us creating nodes instead of drawing

on a tile map.

Chapter 4 reCreating Sokoban

67

We already have x = -4 → 2 and y = -4 → 2; so we can multiply that by the block

size to get the top-left position for each node. We could put this pixel size in Constants,

but we’re already hard-coding the 64 × 64 size by what we’ve selected as the tile map

block size. We’d need to dynamically construct the tile map’s source if we wanted it to be

completely dynamic.

I don't think it's worth the hassle.

if you find yourself repeating a lot of magic numbers, consider making them
constants.

Your levels should now contain any node blocks you’ve specified in their layout:

Tiles and nodes in one of my levels

 Moving the Player
It’s time to add some interactivity! We’re going to add some code to listen for player input

and move the player… assuming they aren’t trying to walk into a wall:

Chapter 4 reCreating Sokoban

68

This is from nodes/player.gd

extends CharacterBody2D

class_name GamePlayer

@onready var level : GameLevel = Variables.current_level

var walls_blocks := [

 Types.blocks.wall_top_left,

 Types.blocks.wall_top,

 Types.blocks.wall_top_right,

 Types.blocks.wall_right,

 Types.blocks.wall_bottom_right,

 Types.blocks.wall_bottom,

 Types.blocks.wall_bottom_left,

 Types.blocks.wall_left,

]

func _unhandled_key_input(event: InputEvent) -> void:

 if event.is_pressed():

 var offset = Vector2(0, 0)

 if event.is_action_pressed("ui_right"):

 offset.x = 64

 if event.is_action_pressed("ui_down"):

 offset.y = 64

 if event.is_action_pressed("ui_left"):

 offset.x = -64

 if event.is_action_pressed("ui_up"):

 offset.y = -64

 var target_block = block_at_position(position + offset)

 if not walls_blocks.has(target_block):

 position = position + offset

func block_at_position(position : Vector2) -> int:

 var i := 0

 var half = floor(level.width / 2)

 var remainder = level.width % 2

Chapter 4 reCreating Sokoban

69

 for y in range(-half - remainder, half):

 for x in range(-half - remainder, half):

 if position.x == x * 64 and position.y == y * 64:

 return level.layout[i]

 i += 1

 return -1

A great way to listen for keyboard input is to add an _unhandled_key_input method

to our player class. In our recreation of Sokoban, a single press of the left key means the

player tries to move 64 pixels to the left.

Thus, we change the offset (which is a change to the player’s position) depending

on which of the ui_* keys the player presses. We figure out if there’s a wall in the new

position using a form of the same strange loops we used before in drawing.

If there’s no wall, we add the offset position to the player’s current position.

Now is a good time to relaunch the game to see if pressing the arrow keys on your

keyboard will move the player. Even if you can move, there are some strange things

you’ll notice.

You can walk through a crate, dot, and door without restriction. You’ll even walk

underneath the crate and dot if the player appears above them in the node tree.

 Avoiding Closed Doors
The player should not be able to leave through the door until all crates are on dots. Let’s

add a check for this. First, we need to remember how many crates there are in a level’s

layout and how many are covered by crates:

This is from nodes/globals/variables.gd

var total_crates : int

var covered_crates : int

We can reset and increment these when we draw a level layout on the play screen:

This is from nodes/screens/play_screen.gd

Variables.total_crates = 0

Variables.covered_crates = 0

Chapter 4 reCreating Sokoban

70

for y in range(-half - remainder, half):

 for x in range(-half - remainder, half):

 if Types.tile_coordinates.has(level.layout[i]):

 # ...snip

 if Constants.node_scenes.has(level.layout[i]):

 # ...snip

 if level.layout[i] == Types.blocks.crate:

 Variables.total_crates += 1

 i += 1

Using these (and a bit of refactoring), we can prevent a player from leaving through a

closed door:

This is from nodes/player.gd

var is_wall : bool = walls_blocks.has(target_block)

var is_closed_door : bool = target_block == Types.blocks.door and

Variables.covered_crates < Variables.total_crates

if not is_wall and not is_closed_door:

 position = position + offset

 Moving Crates
The last bit of movement we need to add is the ability to move crates. This is an

extension of wall checking on the player. If the player is next to a crate and moves in the

direction of the crate and there is space to move the crate….

This is from nodes/player.gd

func _unhandled_key_input(event: InputEvent) -> void:

 if event.is_pressed():

 var offset = Vector2(0, 0)

 if event.is_action_pressed("ui_right"):

 offset.x = 64

 if event.is_action_pressed("ui_down"):

Chapter 4 reCreating Sokoban

71

 offset.y = 64

 if event.is_action_pressed("ui_left"):

 offset.x = -64

 if event.is_action_pressed("ui_up"):

 offset.y = -64

 var target_block := block_at_position(position + offset)

 var further_target_block := block_at_position(position + offset

+ offset)

 var is_wall : bool = walls_blocks.has(target_block)

 var is_closed_door : bool = target_block == Types.blocks.door and

Variables.covered_crates < Variables.total_crates

 var crate := crate_at_position(position + offset)

 var is_crate_blocked_by_wall : bool = walls_blocks.has(further_

target_block)

 if crate and not is_crate_blocked_by_wall:

 crate.position = crate.position + offset

 position = position + offset

 elif not crate and not is_wall and not is_closed_door:

 position = position + offset

func crate_at_position(position: Vector2) -> GameCrate:

 for child in get_parent().get_children():

 if child is GameCrate and child.position.x == position.x and child.

position.y == position.y:

 return child

 return null

We start by checking the space we want the player to move into and the space

beyond it. That’s because the player might be trying to move into a space occupied by a

crate; and we’d want to know if the crate can move.

The player movement code now needs to account for

 1. If the player is trying to push a crate

 2. …and there’s enough space for the crate to be pushed by

the player

Chapter 4 reCreating Sokoban

72

or

 1. If the player is not trying to push a crate

 2. …or trying to walk into a wall

 3. …or trying to walk through a closed door

Relaunch the game and try this movement code out. It’s pretty cool. Unfortunately,

we still have the issue of the player and crate disappearing behind dots if the player and

crate are above the dots in the node tree.

The simplest way to sort this out is to go to the Node2D properties (of the crate and

player) and make the Z Index values greater than those of the dot:

Higher Z Index value means closer to the screen.

 Winning a Level
All that remains is to show that the player has covered all the dots with crates by allowing

the player to leave.

First, we need to connect to signals on the dots:

Chapter 4 reCreating Sokoban

73

Connecting to the body events on dots

The best events for this are on_body_entered and on_body_existed. These are

emitted when a CharacterBody2D or StaticBody2D collides with this Area2D. This is

what that code looks like:

This is from nodes/dot.gd

extends Area2D

class_name GameDot

func _on_dot_body_entered(body) -> void:

 if body is GameCrate:

 Variables.covered_crates += 1

func _on_dot_body_exited(body) -> void:

 if body is GameCrate:

 Variables.covered_crates -= 1

There are two bodies that could collide with each dot – a player or a crate. So we

need to make sure that we only add to the covered crate count when the body that is

colliding is a crate.

Before these collisions will work, we need to set up collision layers and assign the

dots and crates to them:

Chapter 4 reCreating Sokoban

74

Defining new collision layers

We assign these layers through the property inspector:

Chapter 4 reCreating Sokoban

75

Assigning nodes to collision layers

Set the following things:

 1. In Crate, set Layer to crates.

 2. In Crate, set Mask to dots.

 3. In Dot, set Layer to dots.

 4. In Dot, set Mask to crates.

Layers and masks can be tricky to understand. Layer is “what layers this collider is

in,” and Mask is “what layers this collider will collide with.” After the preceding changes,

crates will collide with dots and vice versa. We only need one side of that for our code to

work, but I like to set both sides up unless there's a good reason not to.

Chapter 4 reCreating Sokoban

76

To test this, relaunch the game and move the crate over the top of the dot. You should

now be able to walk through the door. We can take this a step further by connecting to

the on_body_entered signal:

Listening for door events

Now, we can respond to the player moving through the open doorway:

This is from nodes/door.gd

extends Area2D

class_name GameDoor

func _on_door_body_entered(body) -> void:

 if body is GamePlayer:

 body.queue_free()

 print("You win!")

If the player leaves through the open door, we remove their avatar from the level

and print a console message. It’s not the most flashy ending; but it’s a starting point for

anything more elaborate you’d like to do with it.

Chapter 4 reCreating Sokoban

77

one thing i noticed was that using collision shapes that are exactly 64 × 64 pixels
would cause the player to collide with the door even when they are in the block
next to the door. this meant the player would exit the stage even when the player's
code prevented them from entering the door's space. i adjusted all my collision
shapes to be 60 × 60 pixels big and to start at 30 × 30 pixels; so there's always
four pixels of space between the collision shapes.

 Summary
This has been a whirlwind of a chapter. We’ve used all the skills gained so far to build out

a real game. It might need a bit of polish, but you’re welcome to do that so that you can

release it as a game of your own.

Take a bit of time to review the mechanics you built for this game. Swap the sprites

and tiles out for your own art, or a different art pack from kenny.nl. Add a more flashy

win message, with particles and overlays and everything. This is a time for you to be

creative and excited about what you have achieved.

Chapter 4 reCreating Sokoban

79

CHAPTER 5

Designing Levels in
Pixel Art
Our Sokoban implementation is pretty cool, but it has a problem that I’d like to solve in

this chapter. We could keep designing our levels with Godot’s visual tools, but there’s a

better way to handle procedural content.

In fact, we started down the better path while designing our levels in Sokoban. You

might have wondered why we used an obscure grid system when we could draw levels

by hand.

It’s because algorithms can use grid-based data like this to render our tiles and nodes

for us. All we have to do is find an easier way to define the grid data.

 Creating Pixel Art
Creating any kind of art has its challenges, so I won’t pretend to give you shortcuts for it.

All I know is that pixel art offers a set of constraints (limit color palette and canvas size)

that encourage creativity in me.

There are a bunch of applications you can use to draw pixel art. If you want

something free, you can try Piskel. I can also recommend Aseprite, though it’s not free.

Try either, and create a bit of pixel art that is 16 × 16 pixels:

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_5

https://www.piskelapp.com/
https://www.aseprite.org/
https://doi.org/10.1007/978-1-4842-8795-8_5#DOI

80

Example pixel layout

What we want to do is try to represent a typical game level in pixel art so that we can

parse that image file inside of Godot. In this example:

• Green pixels represent trees.

• Gray ones represent rocks.

• The orange pixel represents the player.

You don’t have to use the same colors or layout. You’ll soon see how to

accommodate different designs and colors.

 Converting Pixel Art to a Grid
Let’s open up our experiment project and add a new one for this pixel art code. Import

the pixel art image you created and set up a new inherited scene, from the Experiment

scene, called PixelsExperiment:

Chapter 5 Designing LeveLs in pixeL art

81

Setting the stage

Pixel art is a grid, by design. We need to use some new code to get the grid data out of

the image and into a format that we can manipulate and draw.

Let’s add some methods to do this in PixelsExperiment:

This is from nodes/experiments/pixels_experiment.gd

extends GameExperiment

@export var layout_texture : Texture2D

enum types {

 none,

 tree,

Chapter 5 Designing LeveLs in pixeL art

82

 rock,

 player,

}

const type_colors := {

 types.tree: "65a30d",

 types.rock: "57534e",

 types.player: "ea580c",

}

func _ready() -> void:

 var layout = get_layout()

 # ...do something with the layout

func get_layout() -> Array[Array]:

 var layout_image := layout_texture.get_image()

 var rows := []

 for y in layout_texture.get_height():

 var row := []

 for x in layout_texture.get_width():

 var type := types.none

 var color := layout_image.get_pixel(x, y).to_html(false)

 for t in types.values():

 if not type_colors.has(t):

 continue

 if color == type_colors[t]:

 type = t

 row.append(type)

 rows.append(row)

 return rows

As you can probably tell, I created an enum of the possible types of pixels I have in

my image file. I care about the three colors: for trees, rocks, and the player.

Chapter 5 Designing LeveLs in pixeL art

83

I use the enum values as keys for a dictionary that holds the hexadecimal colors of

each type. This creates a type-safe lookup for the colors while also being quick to extend

with more colors.

We export a Texture2D because it allows for any popular image format to be set

through the property inspector. It has a get_image method we can use to get the

underlying image data.

This Image class has a get_pixel method, which is what we can use to get the image

grid’s pixel data to inspection. get_pixel returns a Color instance, which we can convert

to a hexadecimal value.

We can compare the dictionary of colors to the pixel color to figure out what the type

of each pixel. This gives us a similar grid to the one we built in Sokoban.

 Flipping Layouts
Here’s where things get more interesting. We can take this pixel grid data and manipulate

it to create variation. Let’s start by flipping the grid:

This is from nodes/experiments/pixels_experiment.gd

enum flip_axis {

 none,

 x,

 y,

}

func flip_layout(layout: Array[Array], flip := flip_axis.none) ->

Array[Array]:

 var new_rows := []

 for row in layout:

 var new_row := []

 for cell in row:

 if flip == flip_axis.x:

 new_row.push_front(cell)

 else:

 new_row.push_back(cell)

Chapter 5 Designing LeveLs in pixeL art

84

 if flip == flip_axis.y:

 new_rows.push_front(new_row)

 else:

 new_rows.push_back(new_row)

 return new_rows

Since we have the pixels in a multidimensional array, flipping is a matter of reversing

the direction of rows or cells in each row. We can make use of this by passing the layout

through this new method:

This is from nodes/experiments/pixels-experiment.gd

func _ready() -> void:

 var layout = get_layout()

 var flipped_layout = flip_layout(layout, flip_axis.y)

 # ...do something with the flipped_layout

This is one of many different manipulations possible with this kind of grid data

structure. In a couple chapters, we’ll see how useful it can be for generating varied maps.

 Combining with Nodes and Tile Maps
We can combine this knowledge with what we learned in the Sokoban project. We can

use this array in place of one that we built by hand:

for row in layout:

 for cell in row:

 if tiles.has(cell):

 _tiles.set_cell(

 0, Vector2i(x, y), 0, tiles[cell]

)

 if nodes.has(cell):

 var new_node = nodes[cell].instantiate()

 _nodes.add_child(new_node)

 new_node.position = Vector2(x * 64, y * 64)

Chapter 5 Designing LeveLs in pixeL art

85

 Summary
In this chapter, we took our first steps toward designing our levels with pixel art. While

converting images to arrays isn't groundbreaking, we can manipulate those arrays in

interesting ways.

Take a bit of time to think of other kinds of manipulations we could do to the

resulting pixel art grids. Can you think of how to rotate a layout, or how we could vary the

drawing of cells to inject a bit of realism and randomness?

In the next chapter, we’re going to dive even deeper into the randomness aspect of

content generation, as we gear up to build our next game.

Chapter 5 Designing LeveLs in pixeL art

87

CHAPTER 6

Creating a Seeding
System
Back in Chapter 2, we learned that randomization takes a couple forms in game

development. The first and most common is randomization where we don’t explicitly

control the seed used. That’s what we used to randomize the behavior of the nodes in

that chapter.

The second form of randomization is where we know what the seed is, and we can

control it to some extent. Minecraft is a great example of this, because each level starts

with an input where you can specify a seed.

Seeding can be a bit confusing, but it’s a way to start the randomization algorithm at

an unguessable point. That’s because most randomization isn’t true randomization but

rather pseudo-randomization.

Computers cannot produce random numbers without observing some outside

stimulus; so instead, they offer a predictable kind of randomization progression.

Imagine an infinite sequence of random numbers. Seeding is a way to start at some

point in the sequence and continue it:

Seeded randomization

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_6

https://doi.org/10.1007/978-1-4842-8795-8_2
https://doi.org/10.1007/978-1-4842-8795-8_6#DOI

88

If we pick a different seed, then the starting point is different, so the sequence of

random numbers will be different. If someone using the same algorithm picks the seed

of 90, they will get the same sequence of numbers.

Minecraft picks a random seed, seeded from details like the date and time and

details of the computer’s hardware and configuration.

That seed is then used as the starting point for the pseudo-random number

generation to create what appears to be a completely random world.

 A New Experiment
We’ll become more familiar with these concepts as we see them in action. Let’s create a

new experiment where we study the effects of pseudo-randomization and create a way

for starting seeds to be derived and changed.

Let’s call it the SeedExperiment. We can add the following component tree, so we can

edit the seed value and see a sample of random numbers that are generated with that seed:

Setting up SeedExperiment

Chapter 6 Creating a Seeding SyStem

89

You can make these UI controls as small or as big as you like. We can't anchor them

to the screen because their parent is a Node2D, so it has no implicit size. We can set up

a couple methods to pick a new random number and to update the sample of random

numbers (the labels):

This is from nodes/experiments/seed_experiment.gd

extends GameExperiment

@onready var _line_edit := $VBoxContainer/HBoxContainer/LineEdit as LineEdit

@onready var _grid_container := $VBoxContainer/GridContainer as

GridContainer

func pick_random_number() -> void:

 _line_edit.text = str(randi() % 100)

func update_random_sample() -> void:

 var generator = RandomNumberGenerator.new()

 generator.seed = _line_edit.text.to_int()

 for child in _grid_container.get_children():

 child.text = str(generator.randi() % 100)

Here, we can see both popular forms of randomization. The first is in pick_random_

number, where we’re not defining a seed to start from. When the game starts, the

randomize() function is automatically called. This is much the same way as Minecraft

does to generate the seed, which it then allows the player to edit.

The second kind of randomization happens in update_random_sample, where we

define the seed for the RandomNumberGenerator so that it starts at a predictable point.

We can tie these methods together by adding some signals to the LineEdit and

Button, and we can also make the randomization process happen once on load:

This is from nodes/experiments/seed_experiment.gd

func _ready() -> void:

 refresh()

func refresh() -> void:

 pick_random_number()

 update_random_sample()

Chapter 6 Creating a Seeding SyStem

90

func _on_button_pressed() -> void:

 refresh()

func _on_line_edit_text_changed(_new_text: String) -> void:

 update_random_sample()

When the experiment starts, it will update the LineEdit with a random number

between 0 and 99. This is used to update all the labels to use this as the seed.

Press the randomize button a few times to see the different samples. Then, edit the

value of the LineEdit so that you switch back and forth between two known seeds. You’ll

see that each time you put in the same seed number, the same sample set of random

numbers appears.

That’s the power of seeded randomization. You can share the same experiences with

your friends, even in a random system, if they use the same seed as you.

 Generating Easier Seeds
A random number or sequence of random characters is difficult to remember. Random

number generators tend to use longer seeds so that the seed is harder to guess.

Why force your players to remember a sequence of numbers when you can show

them with something much easier, like two or three words? Those are much easier to

memorize.

Search on Google or GitHub for a word list file in text format. I’m using one that is

about 23KB big. I forget where exactly I found it, but I used it for a game I made a couple

years ago.

Once you’ve found one, put it into the experiment project so that we can load it into

this experiment. Then, we can use code like this to load all the words and allow us to

select the desired number of words for our seed:

Chapter 6 Creating a Seeding SyStem

91

Downloading a words file

This is from nodes/experiments/seed_experiment.gd

func get_words(generator : RandomNumberGenerator, number : int = 3) ->

PackedStringArray:

 var words := get_all_words()

 var size := words.size()

 var chosen := []

 for i in range(3):

 chosen.append(words[generator.randi() % size])

 return PackedStringArray(chosen)

func get_all_words() -> PackedStringArray:

 var file = File.new()

 if file.file_exists("res://resources/objects.txt"):

 file.open("res://resources/objects.txt", File.READ)

 var content = file.get_as_text()

Chapter 6 Creating a Seeding SyStem

92

 file.close()

 return content.split("\n", false)

 return PackedStringArray()

The RandomNumberGenerator’s seed property must be an integer, which we can get

using the hash method on strings:

This is from nodes/experiments/seed_experiment.gd

func get_hash_from_words(words : PackedStringArray) -> int:

 var complete = ""

 for word in words:

 complete += word.trim_prefix(" ").trim_suffix(" ").to_lower()

 return complete.hash()

Now, all we need to do is replace the numeric seeds we were generating with these

new methods:

This is from nodes/experiments/seed_experiment.gd

var generator : RandomNumberGenerator

func pick_random_words() -> void:

 _line_edit.text = " ".join(get_words(generator))

func update_random_sample() -> void:

 generator.seed = get_hash_from_words(_line_edit.text.split(" "))

 for child in _grid_container.get_children():

 child.text = str(generator.randi() % 100)

func _ready() -> void:

 generator = RandomNumberGenerator.new()

 refresh()

func refresh() -> void:

 pick_random_words()

 update_random_sample()

Chapter 6 Creating a Seeding SyStem

93

It seems a bit silly that we’re getting a PackedStringArray of words from get_

all_words, getting a PackedStringArray from get_words, joining them together, and

splitting them into another PackedStringArray to get the hash. It’s because we want to

show the words to the user, and LineEdit’s text property can only be a string.

This makes the seeds a lot easier to remember and share, because it’s a small

number of words to remember.

the hash method’s documentation is careful to point out that identical strings
can generate identical hashes to each other, but that the reverse isn’t always
true. the hash value is a 32-bit integer, which means larger values are limited to
32-bit representations. different values can generate identical hashes, because of
that loss of specificity. this is called a collision, and it’s common to talk about the
possibility of collisions in cryptography.

In fact, seeded randomization has many of the same underpinnings as encryption.

Reversible encryption values are only as strong as the encryption algorithm and

the secrecy of the key used to seed them. Sound familiar? If someone knows the

randomization algorithm and seed, they can reproduce the same sequence of

random values.

 Summary
In this chapter, we learned all about generating seeds so that we can control the

randomization that can occur in our games. We’re going to use this knowledge in the

next chapter, as we build a new game.

Take some time to think about how to integrate this code into a larger project. How

would you structure this code if it wasn’t on the “play” screen? How can you call into it to

get the words and use them to randomize the behavior of worlds and NPCs?

Chapter 6 Creating a Seeding SyStem

95

CHAPTER 7

Recreating Bouncy Cars
It’s time for us to use everything we’ve learned so far to recreate another game. This time,

it’s a game that I made a few years ago, called Bouncy Cars.

Bouncy Cars (2021)

Bouncy Cars is a local coop racing game where each course is procedurally

generated. The aim of the game is to complete five laps without blowing up. Players can

take damage if they collide with the race-way barriers or each other.

It’s the sixth game I made, yet it’s still one of the most polished I released. It includes

robust procedural generation algorithm that makes each course unique and error-free.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_7

https://doi.org/10.1007/978-1-4842-8795-8_7#DOI

96

 Getting Set Up
Let’s get started by creating a new project. We want all the usual things, like a base

Screen node inherited by menu and play screens.

Creating screen nodes

We also need a base CharacterBody2D which our different vehicles can inherit from.

We can create their default behavior and then customize each vehicle.

Chapter 7 reCreating BounCy Cars

97

Creating player nodes

We need a way to switch between screens, like we did in Chapter 4. For this, create a

global Screens node and set it to autoload. We can use similar code to that of Chapter 4

to switch between different scenes:

Chapter 7 reCreating BounCy Cars

https://doi.org/10.1007/978-1-4842-8795-8_4
https://doi.org/10.1007/978-1-4842-8795-8_4

98

This is from nodes/globals/screens.gd

extends Node

var root = null

var current_screen : Types.screens

var current_screen_node : GameScreen

var is_changing_screen := false

func _ready() -> void:

 root = get_tree().get_root()

 current_screen_node = root.get_children().back()

func change_screen(new_screen: Types.screens) -> void:

 if is_changing_screen:

 return

 is_changing_screen = true

 var new_screen_node : GameScreen = Constants.screen_scenes[new_screen].

instantiate()

 load_new_screen(new_screen_node, new_screen)

func load_new_screen(new_screen_node: GameScreen, new_screen: Types.

screens) -> void:

 current_screen_node.queue_free()

 root.add_child(new_screen_node)

 current_screen = new_screen

 current_screen_node = new_screen_node

 is_changing_screen = false

We can define the various screen references in a Constants global:

This is from nodes/globals/constants.gd

extends Node

class_name Types

enum screens {

 none,

Chapter 7 reCreating BounCy Cars

99

 menu,

 new_game,

 play,

}

@export var menu_scene: PackedScene

@export var new_game_scene: PackedScene

@export var play_scene: PackedScene

@onready var screen_scenes := {

 screens.menu: menu_scene,

 screens.new_game: new_game_scene,

 screens.play: play_scene,

}

Now, we can add a few buttons to the screen nodes we’ve made so that we can switch

back and forth between them. I’ll show you what this looks like for the main menu, and

you can extrapolate from there for the remaining screens.

Main menu nodes

We’ve got the usual arrangement of CenterContainer, VBoxContainer, and Button

nodes. This places three buttons in a vertical alignment in the center of the screen. We

can attach listeners to these buttons so that screens change when we press a button:

Chapter 7 reCreating BounCy Cars

100

This is from nodes/screens/main_menu_screen.gd

extends GameScreen

func _on_new_game_pressed() -> void:

 Screens.change_screen(Constants.screens.new_game)

func _on_quit_pressed() -> void:

 get_tree().quit()

Not all platforms have this notion of quitting something. That’s very much a desktop

PC thing. It would be cool if we can hide the quit button on platforms where someone

can press a home button or close a tab:

This is from nodes/screens/main_menu_screen.gd

@onready var _quit := $Center/Buttons/Quit

func _ready() -> void:

 if OS.has_feature("HTML5") or OS.get_name() == "iOS" or OS.get_name()

== "Android":

 _quit.visible = false

Don’t forget, we need to configure the window size as we did before:

• Changing the viewport size to 320 × 240

• Changing the window override size to 1280 × 960

• Changing the Stretch ➤ Mode to canvas_items

• Changing the Stretch ➤ Aspect to expand

This will expand and center the interface, giving full weight to the pixel art.

Chapter 7 reCreating BounCy Cars

101

Changing window size

Chapter 7 reCreating BounCy Cars

102

Changing stretch settings

 Creating a Seed Screen
We’re going to use some of the seed-based generation we learned about in the previous

chapter. When selecting New Game, we’ll present players with a screen that shows them

a random seed phrase. They can choose to keep or customize this phrase.

Chapter 7 reCreating BounCy Cars

103

New Game screen

I expanded the width of the LineEdit to 200 pixels.

Let’s copy some of the code we created in the previous chapter, to select three words

for our seed. We also need the text file of words we downloaded for this purpose:

This is from nodes/globals/generation.gd

extends Node

@export_file("*.txt") var words_file

var generator : RandomNumberGenerator

func _ready() -> void:

 generator = RandomNumberGenerator.new()

 generator.randomize()

func get_three_words_phrase() -> String:

 return " ".join(get_words(generator))

func get_words(generator : RandomNumberGenerator, number : int = 3) ->

PackedStringArray:

 var words := get_all_words()

 var size := words.size()

 var chosen := []

Chapter 7 reCreating BounCy Cars

104

 for i in range(3):

 chosen.append(words[generator.randi() % size])

 return PackedStringArray(chosen)

func get_all_words() -> PackedStringArray:

 var file = File.new()

 file.open(words_file, File.READ)

 var content = file.get_as_text()

 file.close()

 return content.split("\n", false)

func get_hash_from_words(words : PackedStringArray) -> int:

 var complete = ""

 for word in words:

 complete += word.trim_prefix(" ").trim_suffix(" ").to_lower()

 return complete.hash()

Exporting file variables with extension filter

This is like the experiment, but we’re now exporting the file reference instead of

hard-coding the file path. This means we can move the file or global without the link

between the two breaking. It also means we no longer have to check for the presence of

the file before reading from it.

remember to autoload the Generation node.

Chapter 7 reCreating BounCy Cars

105

We can use this in the NewGame screen to populate the phrase input:

This is from nodes/screens/new_game_screen.gd

@onready var _phrase := $Center/Items/Seed/Phrase as LineEdit

func _on_back_pressed() -> void:

 Screens.change_screen(Types.screens.main_menu)

func _ready() -> void:

 _phrase.text = Generation.get_three_words_phrase()

This means the Phrase node will have a random phrase in it as soon as the NewGame

screen loads. It is an editable control because we have to allow for the possibility that the

user will change the seed.

 Generating Maps
The question now is what to do with this seed phrase. One simple way to generate

random maps is to create a set of “corners” that can be randomly selected and

algorithmically modified. Here’s an example of what I mean:

Corner samples

Each of these corners is a potential layout for a quarter of the race track. To

select from them, we need a method that can read the image data and convert it to a

multidimensional array of cell or tile types. Let’s start with some constants for cell types

and pixel colors:

This is from nodes/globals/constants.gd

enum cells {

 none,

 grass,

 road,

Chapter 7 reCreating BounCy Cars

106

 player_1_start,

 player_2_start,

 waypoint,

}

const cell_colors := {

 cells.grass: "38a169",

 cells.road: "4a5568",

 cells.player_1_start: "f687b3",

 cells.player_2_start: "f6ad55",

 cells.waypoint: "4fd1c5",

}

const segment_width := 10

const segment_height := 7

enum segment_types {

 top_left,

 top_right,

 bottom_left,

 bottom_right,

}

const number_of_segments := 6

We can use pixel data to get a multidimensional array of cell types:

This is from nodes/globals/generation.gd

func get_deep_corner_array(image: Image, offset_segment: int) -> Array:

 var rows = []

 for y in Constants.segment_height:

 var row = []

 for x in Constants.segment_width:

 var cell = Types.cells.none

 match image.get_pixel(x + (offset_segment * Constants.segment_

width), y).to_html(false):

Chapter 7 reCreating BounCy Cars

107

 Types.cell_colors[Types.cells.grass]:

 cell = Types.cells.grass

 Types.cell_colors[Types.cells.road]:

 cell = Types.cells.road

 Types.cell_colors[Types.cells.player_1_start]:

 cell = Types.cells.player_1_start

 Types.cell_colors[Types.cells.player_2_start]:

 cell = Types.cells.player_2_start

 Types.cell_colors[Types.cells.waypoint]:

 cell = Types.cells.waypoint

 row.push_back(cell)

 rows.push_back(row)

 return rows

Since the corners image is a single row of corner designs, we can use an integer offset

to fetch the pixel data for a complete corner. An offset of 1 means going a full segment_

width (or, in this case, 10 pixels) to the right.

The rest of the code is straight out of Chapter 5, albeit with different cell types and

colors. Feel free to go back to that chapter to brush up on this approach if you need to.

We can start to build up a complete race course map by fetching all the corners and

picking a clockwise or anticlockwise direction:

This is from nodes/globals/generation.gd

@export var layout_texture : Texture2D

func get_map(user_three_words_phrase = null) -> Dictionary:

 var three_words = null

 if typeof(user_three_words_phrase) == TYPE_STRING:

 three_words = user_three_words_phrase.split(" ")

 else:

 three_words = get_three_words_phrase().split(" ")

 generator.seed = get_hash_from_words(three_words)

 var clockwise = generator.randi() & 1

Chapter 7 reCreating BounCy Cars

https://doi.org/10.1007/978-1-4842-8795-8_5

108

 var top_left_offset = generator.randi() % Constants.number_of_segments

 var top_right_offset = generator.randi() % Constants.number_of_segments

 var bottom_left_offset = generator.randi() % Constants.number_of_

segments

 var bottom_right_offset = generator.randi() % Constants.number_of_

segments

 var segments_image = layout_texture.get_image()

 var top_left_deep_corner = get_deep_corner_array(segments_image, top_

left_offset)

 var top_right_deep_corner = get_deep_corner_array(segments_image, top_

right_offset)

 var bottom_left_deep_corner = get_deep_corner_array(segments_image,

bottom_left_offset)

 var bottom_right_deep_corner = get_deep_corner_array(segments_image,

bottom_right_offset)

 return {

 "three_words": three_words,

 "clockwise": clockwise,

 # ...

 }

If we were to call this method and print the results, we’d see four arrays of cell types,

all randomly selected. That’s a great start, but we need a way to create a loop from what

would otherwise be four top-left corners.

Let’s add a method to flip the corners using code like what we had a couple

chapters ago:

This is from nodes/globals/generation.gd

func get_flipped_corner_array(deep_corner_array: Array, should_flip_x: bool

= false, should_flip_y: bool = false) -> Array:

 var new_rows = []

 for row in deep_corner_array:

 var new_row = []

Chapter 7 reCreating BounCy Cars

109

 for cell in row:

 if should_flip_x:

 new_row.push_front(cell)

 else:

 new_row.push_back(cell)

 if should_flip_y:

 new_rows.push_front(new_row)

 else:

 new_rows.push_back(new_row)

 return new_rows

This method can flip vertically or horizontally; so we could turn a “top-left” corner

into a “bottom-right” corner by flipping both directions. It’s a mirrored rotation.

We can extend our get_map method to flip the corners:

This is from nodes/globals/generation.gd

var top_left_flipped_corner = get_flipped_corner_array(top_left_deep_

corner, false, false)

var top_right_flipped_corner = get_flipped_corner_array(top_right_deep_

corner, true, false)

var bottom_left_flipped_corner = get_flipped_corner_array(bottom_left_deep_

corner, false, true)

var bottom_right_flipped_corner = get_flipped_corner_array(bottom_right_

deep_corner, true, true)

We need to squash the cells into a simpler array (along with some extra metadata)

so that they’re easier to draw. You’ve probably noticed code about “waypoints”. There’s

going to be a bit more now, which we’ll go into more detail about in a bit.

This is from nodes/globals/generation.gd

func get_shallow_corner_array(deep_corner_array: Array, offset_row: int,

offset_cell: int, segment_type: int) -> Dictionary:

 var cells = []

 var waypoints = []

 var i = 0

Chapter 7 reCreating BounCy Cars

110

 for row in deep_corner_array.size():

 for cell in deep_corner_array[row].size():

 cells.push_back({

 "y": row + offset_row,

 "x": cell + offset_cell,

 "type": deep_corner_array[row][cell],

 })

 if deep_corner_array[row][cell] == Types.cells.waypoint:

 waypoints.push_back({

 "y": row + offset_row,

 "x": cell + offset_cell,

 "segment_type": segment_type,

 "index": i,

 })

 i += 1

 return {

 "cells": cells,

 "waypoints": waypoints,

 }

This new method takes a multidimensional array and squashes it into two one-

dimensional arrays: one for waypoint cells and one for all cells. We’re almost ready to

start drawing a map, but we still need to finish up the get_map method:

This is from nodes/globals/generation.gd

func get_map(user_three_words_phrase = null) -> Dictionary:

 var three_words = null

 if typeof(user_three_words_phrase) == TYPE_STRING:

 three_words = user_three_words_phrase.split(" ")

 else:

 three_words = get_three_words_phrase().split(" ")

 generator.seed = get_hash_from_words(three_words)

 var clockwise = generator.randi() & 1

Chapter 7 reCreating BounCy Cars

111

 var top_left_offset = generator.randi() % Constants.number_of_segments

 var top_right_offset = generator.randi() % Constants.number_of_segments

 var bottom_left_offset = generator.randi() % Constants.number_of_

segments

 var bottom_right_offset = generator.randi() % Constants.number_of_

segments

 var segments_image = layout_texture.get_image()

 var top_left_deep_corner = get_deep_corner_array(segments_image, top_

left_offset)

 var top_right_deep_corner = get_deep_corner_array(segments_image, top_

right_offset)

 var bottom_left_deep_corner = get_deep_corner_array(segments_image,

bottom_left_offset)

 var bottom_right_deep_corner = get_deep_corner_array(segments_image,

bottom_right_offset)

 var top_left_flipped_corner = get_flipped_corner_array(top_left_deep_

corner, false, false)

 var top_right_flipped_corner = get_flipped_corner_array(top_right_deep_

corner, true, false)

 var bottom_left_flipped_corner = get_flipped_corner_array(bottom_left_

deep_corner, false, true)

 var bottom_right_flipped_corner = get_flipped_corner_array(bottom_

right_deep_corner, true, true)

 var top_left_shallow_corner = get_shallow_corner_array(top_left_

flipped_corner, 0, 0, Types.segment_types.top_left)

 var top_right_shallow_corner = get_shallow_corner_array(top_right_

flipped_corner, 0, Constants.segment_width, Types.segment_types.

top_right)

 var bottom_left_shallow_corner = get_shallow_corner_array(bottom_left_

flipped_corner, Constants.segment_height, 0, Types.segment_types.

bottom_left)

 var bottom_right_shallow_corner = get_shallow_corner_array(bottom_

right_flipped_corner, Constants.segment_height, Constants.segment_

width, Types.segment_types.bottom_right)

Chapter 7 reCreating BounCy Cars

112

 var cells = []

 cells += top_left_shallow_corner.cells

 cells += top_right_shallow_corner.cells

 cells += bottom_left_shallow_corner.cells

 cells += bottom_right_shallow_corner.cells

 var waypoints = []

 waypoints += top_left_shallow_corner.waypoints

 waypoints += top_right_shallow_corner.waypoints

 waypoints += bottom_left_shallow_corner.waypoints

 waypoints += bottom_right_shallow_corner.waypoints

 return {

 "cells": cells,

 "waypoints": waypoints,

 "generator": generator,

 "three_words": three_words,

 "clockwise": clockwise,

 }

Aside from the complete set of cells and waypoints, we also want to return the seed

words, the clockwise/anticlockwise direction, and the generator. The seed words could

be user-supplied but will usually be random. The generator is useful in case we need to

generate anything in the caller that must be based on the same seed.

 Drawing the Map
We’ve finished the code we need to tell Godot what to build, but now we need to write

the code to tell Godot how to build it. That means taking these arrays and turning them

into tiles and nodes!

We need to store the intended three words (or phrase) that the player has selected.

This means creating a new global and interacting with it from the play screen:

This is from nodes/globals/variables.gd

extends Node

var current_phrase : String

Chapter 7 reCreating BounCy Cars

113

This will store the intended seed phrase so that we can reuse it in generation on later

screens.

remember to autoload the generation node.

We need to set this when the seed screen is being used:

This is from nodes/screens/new_game_screen.gd

func _ready() -> void:

 var phrase = Generation.get_three_words_phrase()

 Variables.current_phrase = phrase

 _phrase.text = phrase

func _on_phrase_text_changed(new_text: String) -> void:

 Variables.current_phrase = _phrase.text

func _on_play_pressed() -> void:

 Screens.change_screen(Types.screens.play)

Don’t forget to attach the Play button’s pressed() signal to _on_play_pressed(). We

can use the current_phrase variable when we’re drawing the map on the Play screen:

This is from nodes/screens/play_screen.gd

extends GameScreen

var map : Dictionary

func _ready() -> void:

 reset()

func reset() -> void:

 map = Generation.get_map(Variables.current_phrase)

 draw_map()

 draw_players()

 calculate_waypoints()

Chapter 7 reCreating BounCy Cars

114

func draw_map() -> void:

 pass

func draw_players() -> void:

 pass

func calculate_waypoints() -> void:

 pass

Drawing the map requires doing three distinct passes: static visuals, player nodes,

and the waypoint system. We’re going to start with the static visuals. We’ve got the array

of cells, so now we need to loop through it and draw each cell based on its type. Add a

TileMap node to PlayScreen, called Tiles. We can draw on in the draw_map() function:

This is from nodes/screens/play_screen.gd

@onready var _tiles := $Tiles as TileMap

func draw_map() -> void:

 for cell in map.cells:

 var roads : Array[Vector2i] = []

 if [

 Types.cells.road,

 Types.cells.player_1_start,

 Types.cells.player_2_start,

 Types.cells.waypoint

].has(cell.type):

 roads.append(Vector2i(cell.x, cell.y))

 _tiles.set_cells_terrain_connect(0, roads, 0, 0, false)

The set_cells_terrain_connect method takes an array of nodes to draw, with the

desired terrain, and connects them all together using bit masks. It requires that we set up

a TileMap and TileSet on PlayScreen, with a road terrain. I’m using this image as my

road terrain:

Chapter 7 reCreating BounCy Cars

115

Road tiles

This is the original artwork from Bouncy Cars; but we’re not going to use it all in this

chapter. The important bits are the gray road sections. Go ahead and set up a terrain with

these. Here’s what the bit masks look like for my terrain:

Bit masks

Chapter 7 reCreating BounCy Cars

116

Notice how I have a blank tile in the terrain, which has no bits set. I arrived at this

point through trial and error; so it’s likely you’ll need to experiment with the set_cells_

terrain_connect method for your game.

For instance, the final parameter is the ignore_blank_tiles method, which defaults

to true. I had to set this to false to get the road tiles to connect. That, in combination

with a completely blank (in appearance and bit mask) tile, results in a neat result.

 Drawing the Players
Next up, we need to place the players on the map. We haven’t actually made the players

yet; so let’s do that. I’m using the following artwork, but we’ll only need parts of it:

Car sprites

It’s tricky to see here, but the second line actually has the cars outlined. This is useful

for car selection, as I have implemented in Bouncy Cars:

Chapter 7 reCreating BounCy Cars

117

Selected cars

You can make as many of these vehicles as you like; but I’m going to stick to three for

now. The base Player node needs a few child nodes that all of them will inherit. Here’s

what one of them looks like once it has a CollisionPolygon2D and Sprite2D:

The digger

Chapter 7 reCreating BounCy Cars

118

We can then place a random vehicle for both players at a random start location. Let’s

find a good starting position:

This is from nodes/screens/play_screen.gd

func get_start_cells() -> Dictionary:

 var start_cells = []

 for cell in map.cells:

 if cell.type == Types.cells.player_1_start:

 start_cells.push_back(cell)

 var player_1: Dictionary = start_cells[map.generator.randi() % start_

cells.size()]

 var player_2: Dictionary

 for cell in map.cells:

 if cell.type == Types.cells.player_2_start:

 if cells_are_close(player_1, cell):

 player_2 = cell

 break

 return {

 "player_1": player_1,

 "player_2": player_2,

 }

func cells_are_close(player_1: Dictionary, player_2: Dictionary) -> bool:

 if player_1.x == player_2.x and (player_1.y == player_2.y - 1 or

player_1.y == player_2.y + 1):

 return true

 if player_1.y == player_2.y and (player_1.x == player_2.x - 1 or

player_1.x == player_2.x + 1):

 return true

 return false

These methods pick a random start cell for the first player and then find the closest

start cell for the second player. The start positions need to be in the same row or column,

or this code won’t find the second start cell.

Chapter 7 reCreating BounCy Cars

119

We can use these in the draw_players method to draw both players and rotate them

to face the correct way with a rotate_players method:

This is from nodes/screens/play_screen.gd

@export var digger_scene : PackedScene

@export var fire_truck_scene : PackedScene

@export var monster_truck_scene : PackedScene

var player_1_vehicle : GamePlayer

var player_2_vehicle : GamePlayer

func draw_players() -> Dictionary:

 var start_cells := get_start_cells()

 var vehicle_scenes := [digger_scene, fire_truck_scene, monster_

truck_scene]

 var player_1_tile_position : Vector2 = _tiles.map_to_

local(Vector2(start_cells.player_1.x, start_cells.player_1.y))

 var player_1_start_position : Vector2 = player_1_tile_position + _

tiles.position

 var player_1_vehicle_index : int = map.generator.randi() % vehicle_

scenes.size()

 player_1_vehicle = vehicle_scenes[player_1_vehicle_index].instantiate()

 add_child(player_1_vehicle)

 player_1_vehicle.position = player_1_start_position

 vehicle_scenes.remove_at(player_1_vehicle_index)

 var player_2_tile_position : Vector2 = _tiles.map_to_

local(Vector2(start_cells.player_2.x, start_cells.player_2.y))

 var player_2_start_position : Vector2 = player_2_tile_position + _

tiles.position

 player_2_vehicle = vehicle_scenes[map.generator.randi() % vehicle_

scenes.size()].instantiate()

 add_child(player_2_vehicle)

Chapter 7 reCreating BounCy Cars

120

 player_2_vehicle.position = player_2_start_position

 var degrees := rotate_players(start_cells.player_1)

 return {

 "start_cells": start_cells,

 "degrees": degrees,

 }

func rotate_players(player_1 : Dictionary) -> int:

 var degrees := 0

 if (player_1.x < 5 and map.clockwise) or (player_1.x > 15 and not map.

clockwise):

 degrees = -90

 if (player_1.x < 5 and not map.clockwise) or (player_1.x > 15 and map.

clockwise):

 degrees = 90

 if (player_1.y < 5 and map.clockwise) or (player_1.y > 15 and not map.

clockwise):

 degrees = 0

 if (player_1.y < 5 and not map.clockwise) or (player_1.y > 15 and map.

clockwise):

 degrees = 180

 player_1_vehicle.rotation = deg_to_rad(degrees)

 player_2_vehicle.rotation = deg_to_rad(degrees)

 return degrees

There’s a bunch happening, so let’s break it down:

 1. We start by picking a random vehicle for the first player using the

generator instance returned by get_map.

 2. We remove this vehicle from the pool for the second player so that

the players have unique vehicles.

 3. We calculate their position according to the start_position data.

Chapter 7 reCreating BounCy Cars

121

 4. We add both players to PlayScreen and have their position set.

 5. We rotate the players based on the starting position of the first

player. We assume that if they are close to the left- or right-hand

side of the tile map, they need to face up or down.

 6. If they’re close to the top or the bottom of the tile map, then we

face them left or right.

 7. The start positions and initial rotation of the vehicles are

important for working out the correct direction for travel later on.

This means you have to position your starting positions within the first five pixels

of the left or top edges of your pre-drawn segments. We could determine these margins

algorithmically, but I don’t think it’s worth the hassle.

Drawing tiles and cars

Chapter 7 reCreating BounCy Cars

122

 Calculating Waypoints
Now we get to the part where we talk about waypoints: what they are and why we need

them. Our segments have these light blue dots that we record as being waypoints.

In racing games like ours, where you can be facing either direction, it’s common for

the game to tell the player when they’re going in the wrong direction.

In a game with generated maps, it can be tricky determining what the right way to

go is. Let me describe how I hacked my way through it the first time so you can see my

thought process.

Invisible waypoints in the map

I started out drawing these invisible waypoints in the map, lining up with the

waypoint pixels in the pre-drawn corners. Taking the direction into account, I’d then

shoot a bullet from the first waypoint in the direction the players were facing.

If the direction was clockwise, I’d rotate a few degrees to the left; and if the direction

was anticlockwise, I’d rotate a few to the right. This gave me a starting direction to fire an

invisible bullet toward.

In increments of five degrees, if I hadn’t hit anything with the invisible bullet, I’d

rotate back toward the direction the cars should be facing, until I hit a waypoint.

Chapter 7 reCreating BounCy Cars

123

Firing bullets

Once I hit a waypoint, I’d add it to the list and start firing bullets from it, using the last

angle as the new starting angle to fire the bullet.

These invisible bullets were fast, but they can’t be too fast or they’ll overshoot the

waypoints. Because of this delay, I added a countdown timer to the start of the race,

which was necessary to hide the bullet scan delay. This ended up being a nice feature of

the game.

 The Right Way to Do This
Little did I know, at the time, that I already had a better solution. I had to determine the

correct “first” waypoint. I did by working out which waypoint had the smallest distance

to the first player’s starting position.

I just had to reuse the same logic to figure out what the next waypoint should be after

that. Here’s what that code should look like:

This is from nodes/screens/play_screen.gd

func reset() -> void:

 map = Generation.get_map(Variables.current_phrase)

 draw_map()

 var player_positions := draw_players()

 calculate_waypoints(player_positions)

var ordered_waypoint_positions : Array[Vector2] = []

func calculate_waypoints(player_positions: Dictionary) -> void:

 var unordered_waypoints = map.waypoints.duplicate() as Array

 var start_position : Vector2

Chapter 7 reCreating BounCy Cars

124

 while unordered_waypoints.size() > 0:

 if ordered_waypoint_positions.size() == 0:

 start_position = Vector2(player_positions.start_cells.

player_1.x, player_positions.start_cells.player_1.y)

 else:

 start_position = ordered_waypoint_positions[ordered_waypoint_

positions.size() - 1]

 var nearest_waypoint = unordered_waypoints[0]

 var nearest_waypoint_position = Vector2(nearest_waypoint.x,

nearest_waypoint.y)

 for waypoint in unordered_waypoints:

 if ordered_waypoint_positions.size() < 2:

 if player_positions.degrees == 0 and waypoint.x < player_

positions.start_cells.player_1.x:

 continue

 if player_positions.degrees == 90 and waypoint.y < player_

positions.start_cells.player_1.y:

 continue

 if player_positions.degrees == 180 and waypoint.x > player_

positions.start_cells.player_1.x:

 continue

 if player_positions.degrees == -90 and waypoint.y > player_

positions.start_cells.player_1.y:

 continue

 var waypoint_position = Vector2(waypoint.x, waypoint.y)

 if waypoint_position.distance_squared_to(start_position) <

nearest_waypoint_position.distance_squared_to(start_position):

 nearest_waypoint = waypoint

 nearest_waypoint_position = waypoint_position

 ordered_waypoint_positions.append(nearest_waypoint_position)

 unordered_waypoints.erase(nearest_waypoint)

Chapter 7 reCreating BounCy Cars

125

Another huge method! Let’s break it down:

 1. We change the reset method to pass the starting positions and

rotation to calculate_waypoints.

 2. This, in turn, creates a copy of the unordered waypoints so that we

can change this array in place.

 3. While there are still unordered waypoints left, we loop through

them and find the next nearest waypoint to the most recent

ordered waypoint position.

 4. If it’s the first time we’re doing this check, there won’t be a last

ordered waypoint; so we set this to the player’s position.

 5. If we’re calculating the first couple waypoint positions, we want to

eliminate all waypoints that are behind the players from the check

so that we establish the clear direction to the next waypoint.

 6. Once we calculate the nearest next waypoint, we add its position

to the ordered waypoint position list and remove it from

further checks.

This results in a list of ordered waypoint positions, where the first is the waypoint

nearest in the direction the players should move and the last is the waypoint closest to

their back.

 Moving the Players
Let’s add the ability for the first player to move around the track. There are a whole

bunch of different ways to model their movement, but I found an interesting take. It’s

based on the physics surrounding a vehicle’s wheel base, steering angle, and drag:

This is from nodes/players/player.gd

extends CharacterBody2D

class_name GamePlayer

@export var wheel_base := 30.0

@export var steering_angle := 90.0

Chapter 7 reCreating BounCy Cars

126

@export var engine_power := 400.0

@export var friction := -0.9

@export var drag := -0.0015

@export var braking := -450.0

@export var max_speed_reverse := 150.0

var steer_angle: float

var acceleration := Vector2.ZERO

func _physics_process(delta: float) -> void:

 acceleration = Vector2.ZERO

 get_input()

 apply_friction()

 calculate_steering(delta)

 velocity += acceleration * delta

 var collided := move_and_slide()

func get_input():

 var turn = 0

 if Input.is_action_pressed("ui_left"):

 turn -= 1

 if Input.is_action_pressed("ui_right"):

 turn += 1

 steer_angle = turn * deg_to_rad(steering_angle)

 if Input.is_action_pressed("ui_up"):

 acceleration = transform.x * engine_power

 if Input.is_action_pressed("ui_down"):

 acceleration = transform.x * braking

func apply_friction():

 if velocity.length() < 5:

 velocity = Vector2.ZERO

Chapter 7 reCreating BounCy Cars

127

 var friction_force = velocity * friction

 var drag_force = velocity * velocity.length() * drag

 if velocity.length() < 100:

 friction_force *= 3

 acceleration += drag_force + friction_force

func calculate_steering(delta):

 var rear_wheel = position - transform.x * wheel_base / 2.0

 var front_wheel = position + transform.x * wheel_base / 2.0

 rear_wheel += velocity * delta

 front_wheel += velocity.rotated(steer_angle) * delta

 var new_heading = (front_wheel - rear_wheel).normalized()

 var d = new_heading.dot(velocity.normalized())

 if d > 0:

 velocity = new_heading * velocity.length()

 if d < 0:

 velocity = -new_heading * min(velocity.length(), max_speed_reverse)

 rotation = new_heading.angle()

The movement happens in three stages:

 1. Calculating the input that should affect the movement and

increasing acceleration in response

 2. Applying friction to slow the vehicle down over time

 3. Applying a steering direction to the velocity

With this code in place, both vehicles move at the same time. That’s definitely not the

best behavior, though it is entertaining for a short while. We should add a set of controls

that affect movement upon player creation so that we can only respond to them on the

player that they apply to:

Chapter 7 reCreating BounCy Cars

128

This is from nodes/players/player.gd

var controls := {

 "left": "ui_left",

 "right": "ui_right",

 "accelerate": "ui_up",

 "slow": "ui_down",

}

func get_input():

 var turn = 0

 if Input.is_action_pressed(controls.left):

 turn -= 1

 if Input.is_action_pressed(controls.right):

 turn += 1

 steer_angle = turn * deg_to_rad(steering_angle)

 if Input.is_action_pressed(controls.accelerate):

 acceleration = transform.x * engine_power

 if Input.is_action_pressed(controls.slow):

 acceleration = transform.x * braking

Then, we can disable the second player’s controls by providing a different set of

controls when we create it:

This is from nodes/screens/play_screen.gd

player_2_vehicle = vehicle_scenes[map.generator.randi() % vehicle_scenes.

size()].instantiate()

player_2_vehicle.controls = {

 "left": "ui_cancel",

 "right": "ui_cancel",

 "accelerate": "ui_cancel",

 "slow": "ui_cancel"

}

add_child(player_2_vehicle)

Chapter 7 reCreating BounCy Cars

129

 Warning the Players About Directions
Finally, we should use the waypoints we’ve calculated. Let’s show something to the

player to let them know what direction they should be travelling in. The ideal thing to

use for this is an arrow that points to the next waypoint, so they can re-orient themselves:

The waypoint arrow

We can reference this in the _physics_process method. We need to show the arrow

(if required) and turn it toward the desired waypoint. This takes a bit of math and linear

interpolation to look nice:

This is from nodes/players/player.gd

var show_waypoint := false

var waypoint_position : Vector2

@onready var _arrow := $Arrow as Sprite2D

func _physics_process(delta: float) -> void:

 if show_waypoint:

 _arrow.rotation = lerp(_arrow.rotation, get_angle_to(waypoint_

position) + PI / 2, 1)

 _arrow.global_position = global_position.move_toward(waypoint_

position, 20)

 _arrow.visible = true

 else:

Chapter 7 reCreating BounCy Cars

130

 _arrow.visible = false

 acceleration = Vector2.ZERO

 get_input()

 apply_friction()

 calculate_steering(delta)

 velocity += acceleration * delta

 var collided := move_and_slide()

All that we should need to show the arrow pointing to the right place is tell the player

to show the arrow and give it a position to point toward.

Unfortunately, this will take a bunch of code to achieve. We need to track the next

waypoint the player is moving toward. If they are too far away from it, then we should

show the arrow. If they get too close to it, then we need to pick the next waypoint in the

sequence to set as their next:

This is from nodes/screens/play_screen.gd

var player_1_next_waypoint_index : int

func reset() -> void:

 map = Generation.get_map(Variables.current_phrase)

 draw_map()

 var player_positions := draw_players()

 calculate_waypoints(player_positions)

 player_1_next_waypoint_index = 0

func _physics_process(delta: float) -> void:

 var player_1_next_waypoint = ordered_waypoint_positions[player_1_next_

waypoint_index]

 var player_1_next_waypoint_position := _tiles.map_to_

local(Vector2(player_1_next_waypoint.x, player_1_next_waypoint.y))

 if player_1_vehicle.global_position.distance_to(player_1_next_waypoint_

position) < 100:

 player_1_vehicle.show_waypoint = false

Chapter 7 reCreating BounCy Cars

131

 if player_1_vehicle.global_position.distance_to(player_1_next_

waypoint_position) < 50:

 player_1_next_waypoint_index += 1

 if player_1_next_waypoint_index >= ordered_waypoint_

positions.size():

 player_1_next_waypoint_index = 0

 return

 else:

 player_1_vehicle.show_waypoint = true

 player_1_vehicle.waypoint_position = player_1_next_waypoint_

position

It would be a bit more efficient to do this with a timer, but the results would be

the same.

 Summary
This has been another huge chapter, putting our knowledge into practice. I’ve skimmed

the surface of what it would take to produce a polished version of Bouncy Cars; but I’ve

also shown you all the different parts of making a good procedural race track generator

that you can base your own games on.

There are so many places you could take this project from here:

• You could wire up the second player’s controls.

• You could add collisions to the road tiles so that the players need to

stay inside the lines to win.

• You could add win/lose conditions and messaging.

• You could add more vehicles and decorations.

I could fill the rest of this book with these refinements, but I’ll let you decide how

much of that you would like to add to your game.

In the next chapter, we’re going to move on to navigating within a generated world,

not using the keyboard as we did here, but things like pathfinding and click to move.

Chapter 7 reCreating BounCy Cars

133

CHAPTER 8

Navigating in Generated
Levels
So far, all our player movement has been through the use of arrow keys or similar.

We’ve yet to create a click-to-move system, or any sort of enemy or NPC (nonplayable

character) movement. Before we can do that, we need to build a foundation for

pathfinding.

That’s going to be the focus of this chapter. We’re going to look at how Godot

handles pathfinding and how we can build maps with obstacles that the player must

navigate around.

 Getting Set Up
Let’s create a new experiment in our experiment project, called NavigationExperiment.

Follow all the same steps you did before to have this new experiment displayed as the

default experiment. If you need a refresher, refer to Chapter 2 for how to set up new

experiments.

Then, reuse any of the tile sets we’ve already used to create a basic TileMap and

TileSet combo:

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_8

https://doi.org/10.1007/978-1-4842-8795-8_2
https://doi.org/10.1007/978-1-4842-8795-8_8#DOI

134

Creating the TileMap

Increase the Transform ➤ Scale of NavigationExperiment to 3 × 3 and change Project

Settings ➤ Window values so that the graphics resize along with the window. 640 × 480

pixels seems like a good window size. Refer to the previous chapter if you get stuck.

This gives us a good starting point for the navigation work we’re about to do.

 Adding Basic Movement
Godot has a neat set of tools to help us work out the path we can take between

points of interest. The main ones, which we need to add to our experiment, are

NavigationRegion2D and NavigationAgent2D. The agent needs to be a child of the

player sprite, while the region can be anywhere in the scene tree.

Once added, we will also need to enable Avoidance on the agent so that it can path

around any obstacles, and Max Speed to 20 pixels per second:

Chapter 8 NavigatiNg iN geNerated LeveLs

135

Regions and agents

I’ve set the player up as a Sprite2D, but you can use a node that has a position

property. The code that controls or interacts with these nodes looks like this:

This is from experiments/navigation_experiment.gd

extends GameExperiment

@onready var _player := $Sprite2d as Sprite2D

@onready var _agent := $Sprite2d/NavigationAgent2d as NavigationAgent2D

@onready var _destination := $Marker2d as Marker2D

func _ready() -> void:

 _agent.velocity_computed.connect(

 func(velocity: Vector2) -> void:

 _player.global_position += velocity

)

 _agent.set_target_location(_player.global_position)

 await get_tree().create_timer(1.0).timeout

 _agent.set_target_location(_destination.global_position)

func _physics_process(delta: float) -> void:

 var next_location := _agent.get_next_location()

 var next_velocity := next_location - _player.global_position

 _agent.set_velocity(next_velocity)

Chapter 8 NavigatiNg iN geNerated LeveLs

136

You can think of the NavigationAgent2D as the controller for the movement of the

player. It communicates with the NavigationServer to work out the appropriate path

between points of interest. It can also send movement or positional information back to

the scene where things are moving.

In this case, we can listen for the velocity_computed signal and use the velocity it

returns to move the player around the screen. To make sure this signal happens, check

the Avoidance Enabled check box in the properties inspector pane.

Signals are the perfect place to use lambda functions, but we can also define named

functions and connect them to the same signals. Do what feels best for you.

We need to call the agent's get_next_location method inside the physics process.

This gets the next position on the path for the player to travel. It also allows the agent to

check if there will be any collisions and adjust the path.

To work out what the new velocity should be, we take the next position along the

path and subtract the player’s position. This is the velocity the NavigationAgent2D needs

to work out where to move next.

 Adding Navigation to Tile Maps
It’s not essential to have a NavigationRegion2D in order for this click-to-move

functionality to work. It’s just the simplest way to get started. If you prefer, you can also

add this navigation region data to your tile maps.

Let’s test this out by adding the data to our tile map:

 1. Select the tile map and change Navigation Visibility Mode to

Force Show.

Chapter 8 NavigatiNg iN geNerated LeveLs

137

 2. Click the Tile Set drop-down, and scroll down to

Navigation Layers.

 3. Click Add Element.

Chapter 8 NavigatiNg iN geNerated LeveLs

138

 4. Click the Tile Set tab at the bottom of the screen.

 5. Click the paint brush icon, and select the Navigation Layer 0 we

just created.

 6. Click on the tiles that you want to be navigable.

 7. Once we remove the NavigationRegion2D, the map should

resemble this:

Chapter 8 NavigatiNg iN geNerated LeveLs

139

Navigation data in tile sets

We don’t even have to change the code for the NavigationAgent2D to use this new

navigation data. We only have to delete the NavigationRegion2D and re-run the game.

The player character will now move around the walls instead of through them.

 Adding Obstacle Nodes
We could build entire games using only these tile set navigation properties; but our

games might need tile sets and obstacle nodes.

The simplest approach is to add more NavigationAgent2D nodes to the map. The

player will then attempt to avoid them, though sometimes the pathing is a bit buggy:

Chapter 8 NavigatiNg iN geNerated LeveLs

140

Avoidance with other NavigationAgent2D nodes

We can try to replicate this same navigation data using many NavigationRegion2D

nodes. It’s going to be a pain in the butt to position them all next to each other and with

straight lines:

Chapter 8 NavigatiNg iN geNerated LeveLs

141

Navigation data in nodes

Furthermore, the navigation is still buggy. It would be better if we could use collision

polygons to carve out non-navigable areas of the navigation rectangle.

Before we jump into the code required to do this, let’s change our obstacles to Area2D

nodes with CollisionPolygon2D colliders. We should also add another Area2D node for

the walls:

Chapter 8 NavigatiNg iN geNerated LeveLs

142

Adding colliders for non-navigable areas

Add each of these to a group. Make it something that you’ll remember, which

describes what the purpose of being in this group is:

Adding non-navigable areas to the same group

Now, we can find these nodes and cut them out of the navigation region using code:

This is from experiments/navigation_experiment.gd

@onready var _region := $NavigationRegion2d as NavigationRegion2D

func cut_out_areas() -> void:

 var outlines := []

Chapter 8 NavigatiNg iN geNerated LeveLs

143

 for node in get_tree().get_nodes_in_group("non_navigable_entity"):

 var node_outline := PackedVector2Array()

 var node_collider := node.get_node("CollisionPolygon2d") as

CollisionPolygon2D

 var node_polygon := node_collider.get_polygon()

 for vertex in node_polygon:

 node_outline.append(node.transform * vertex)

 outlines.append(node_outline)

 for outline in outlines:

 _region.navpoly.add_outline(outline)

 _region.navpoly.make_polygons_from_outlines()

func _ready() -> void:

 cut_out_areas()

 # ...

When the experiment loads up, we now call cut_out_areas, which loops through

each of the grouped nodes and adds their outlines to an array.

We combine these with the outlines in the _region.navpoly so that they are

excluded from the starting region polygon.

If you use this approach in your games, don’t forget to call make_polygons_from_

outlines, or your navigation region won’t update.

Here’s what this looks like, with Debug ➤ Visible Navigation enabled:

Chapter 8 NavigatiNg iN geNerated LeveLs

144

Cutting outlines out of a NavigationPolygon2D

Unfortunately, while the NavigationAgent2D movement is nicer, there are significant

drawbacks to this approach, the main one being that the outlines can never touch.

Godot has this nasty habit of ignoring overlapping outlines. You're likely to see the

error NavigationPolygon: Convex partition failed! If you leave gaps to avoid this, the

player will move straight through the gaps, ignoring the intended route.

 Merging Polygons
The most bullet-proof solution I’ve come across is to

 1. Group overlapping polygons together

 2. Combine them into single polygons

Chapter 8 NavigatiNg iN geNerated LeveLs

145

 3. Add those polygons as outlines to the navpoly

It’s a mission.

Let’ start by creating a method to find intersecting polygons:

This is from experiments/navigation_experiment.gd

var auto_number = 0

func find_intersections(node, nodes, groups, group_id = null) ->

Dictionary:

 var node_collider := node.get_node("CollisionPolygon2d") as

CollisionPolygon2D

 var node_polygon := node_collider.get_polygon()

 for other_node in nodes:

 if other_node == node:

 continue

 var other_node_collider := other_node.get_

node("CollisionPolygon2d") as CollisionPolygon2D

 var other_node_polygon := other_node_collider.get_polygon()

 var result := Geometry2D.intersect_polygons(node_polygon * node.

transform, other_node_polygon * other_node.transform)

 if result.size() > 0:

 if group_id == null:

 group_id = auto_number

 groups[group_id] = []

 groups[group_id].append(node)

 nodes.erase(node)

 auto_number += 1

 groups[group_id].append(other_node)

 nodes.erase(other_node)

 return {

 "nodes": nodes,

 "groups": groups,

 }

Chapter 8 NavigatiNg iN geNerated LeveLs

146

This method accepts a reference node, which is any node that has a

CollisionPolygon2D in it. It also accepts an array of nodes to compare with. It loops

through all the comparable nodes to see if any of them intersect with the subject node.

If it finds intersections, it adds both nodes to the groups array. If there is no

group_id, it creates a new group from the subject node and all others from the list of

comparable nodes that intersect with it.

Here’s how you can think of it working:

Grouping intersecting polygons

Let’s also add a helper to simplify how we get outlines from collision polygons:

This is from experiments/navigation_experiment.gd

func get_outline(node) -> PackedVector2Array:

 var node_outline := PackedVector2Array()

 var node_collider := node.get_node("CollisionPolygon2d") as

CollisionPolygon2D

 var node_polygon := node_collider.get_polygon()

 for vertex in node_polygon:

 node_outline.append(node.transform * vertex)

 return node_outline

Chapter 8 NavigatiNg iN geNerated LeveLs

147

We’ve already seen this code in action, but we’re going to perform the same

operation many times; so it’s better to extract it to this helper method.

We can refactor the cut_out_areas method to combine intersecting groups of

polygons into single polygons and add all the resulting outlines to the navpoly:

This is from experiments/navigation_experiment.gd

func cut_out_areas() -> void:

 var nodes := get_tree().get_nodes_in_group("non_navigable_entity")

 var groups := {}

 for node in nodes:

 var result := find_intersections(node, nodes, groups)

 nodes = result.nodes

 groups = result.groups

 for key in groups.keys():

 for node in groups[key]:

 var result := find_intersections(node, nodes, groups, key)

 nodes = result.nodes

 groups = result.groups

 for key in groups.keys():

 var outlines := []

 for node in groups[key]:

 outlines.append(get_outline(node))

 var combined = outlines[0]

 for outline in outlines.slice(1):

 combined = Geometry2D.merge_polygons(combined, outline)[0]

 _region.navpoly.add_outline(combined)

 _region.navpoly.make_polygons_from_outlines()

 for node in nodes:

 _region.navpoly.add_outline(get_outline(node))

 _region.navpoly.make_polygons_from_outlines()

Chapter 8 NavigatiNg iN geNerated LeveLs

148

 1. We check the comparable node list to create the initial groups of

intersecting nodes.

 2. We follow this up by checking each intersecting group to make

sure we’ve added all the nodes that overlap in the group. If we

skipped this step, we could miss intersecting nodes due to the

ordering of the initial comparable nodes array.

 3. Once we have the final intersecting groups, we combine all their

polygons into a single polygon per group.

 4. These we add to the navpoly, along with a quick pass through all

the non-intersecting polygons.

All this code combines to create a solution to the problem of overlapping outlines in

a navpoly mesh. The resulting mesh means our player character will navigate around the

obstacles:

Chapter 8 NavigatiNg iN geNerated LeveLs

149

Combining polygons before adding them to the navpoly

This allows us to create obstacles dynamically and avoids the need to manually

position NavigationRegion2D nodes. A handy trick, to be sure.

 Summary
Navigation is one of those things that is easy to learn and difficult to master. Once you

step outside of the simplest use case, things can and often do go awry.

Fortunately, we’ve come up with a solid solution to the problem of populating maps

with obstacles. This will be super useful for the next game we make.

Chapter 8 NavigatiNg iN geNerated LeveLs

151

CHAPTER 9

Collective Nodes
in Generated Maps
I don’t know if you’ve noticed, but all our pixel-art-to-level code converts individual

pixel into individual tiles or nodes. We’ve yet to take clusters of the same color pixels and

convert them into a single complex node.

That's what we're going to tackle in this chapter. It's a trick that is going to come in

handy for the next game we make. I want to take a quick detour to talk about the different

approaches and skills we’ll need to be able to do this.

 Refreshing Our Memory
Do you remember the code that we used to draw nodes from pixel art?

This is from Chapter 5.

for row in layout:

 for cell in row:

 if tiles.has(cell):

 _tiles.set_cell(0, Vector2i(x, y), 0, tiles[cell])

 if nodes.has(cell):

 var new_node = nodes[cell].instantiate()

 _nodes.add_child(new_node)

 new_node.position = Vector2(x * 16, y * 16)

This code shows the 1:1 relationship between pixels in the layout image and the

nodes or tiles they represent in a map. I want us to develop this idea further.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_9

https://doi.org/10.1007/978-1-4842-8795-8_5
https://doi.org/10.1007/978-1-4842-8795-8_9#DOI

152

Let’s create a new experiment. We’ll call this one CollectiveNodesExperiment. Be

sure to set it as the experiment that loads on PlayScreen.

To this, we’ll add a couple OptionButton nodes for width and height. We could use

LineEdit nodes, but that would allow invalid inputs. I think it’s better to stick with the

safer list of allowed values:

Creating UI for our experiment

I’ve gone ahead and set minimum widths on the HBoxContainer, VBoxContainer,

and ColorRect nodes. Being descendants of a Node2D, they cannot assume their size so

they begin at 0px width and 0px height.

I’ve added the following units to the OptionButton nodes, but you can add different

ones if you prefer:

• 1 unit

• 2 units

• 3 units

You can think of these values as they relate to the pixels of whatever pixel art image

we are drawing from. We’re not actually going to attach these to an image, but you

should be well familiar with how that works by now.

Chapter 9 ColleCtive Nodes iN GeNerated Maps

153

As either of these OptionButton nodes changes, we can call a render method, which

can switch out the visible nodes:

This is from experiments/collective_nodes_experiment.gd

extends GameExperiment

var width := 1

var height := 1

func _ready() -> void:

 render()

func _on_width_option_button_item_selected(index: int) -> void:

 width = index + 1

 render()

func _on_height_option_button_item_selected(index: int) -> void:

 height = index + 1

 render()

func render() -> void:

 print(str(width) + " wide, " + str(height) + " high")

Don’t forget to link these methods up to their respective nodes:

Connecting OptionButton signals

Now, when either of the OptionButton nodes changes, we should see a debug

message describing the intended width and height.

Chapter 9 ColleCtive Nodes iN GeNerated Maps

154

 Selecting the Appropriate Node(s)
The basic idea behind a node like this is that we want to show or hide sprites and

colliders based on how high and wide the node should be. We’re actually going to have

many possible variations but only display one that fits the intended size.

Let’s create a few variations:

Tile map variations

The configuration I’ve chosen is a bunch of Node2D nodes, nested below the

ColorRect node. Each contains possible variations matching the name of their parent.

So the TileMap nodes below 1x3 would all be one unit wide and three units high.

They might have a different visual style and colliders; but they fit within the size dictated

by their parent Node2D.

We can select from among these by composing the name of the intended Node2D:

Chapter 9 ColleCtive Nodes iN GeNerated Maps

155

This is from experiments/collective_nodes_experiment.gd

@onready var _color_rect := $HBoxContainer/ColorRect as ColorRect

func render() -> void:

 for group in _color_rect.get_children():

 for child in (group as Node2D).get_children():

 (child as TileMap).visible = false

 var intended_name := str(width) + "x" + str(height)

 var intended_node := _color_rect.get_node(intended_name)

 var index = randi() % intended_node.get_child_count()

 (intended_node.get_child(index) as TileMap).visible = true

We could achieve this in many different ways:

 1. Giving every TileMap a group of the composite name, like tile_1x1,

and finding all nodes within the same group to select from

 2. Adding all TileMap nodes to an exported array of node paths

The bottom line is that we’re achieving a level of randomization with the constraints

of an intended width and height.

This will allow us to tell a “house” node how wide and high we want it to be. It'll

have a fixed size based on a cluster of pixels in our pixel art layout image, but still be

somewhat random.

We don’t have to stick to using TileMap nodes, either. We’ve spent an equal amount

of time learning about nodes and colliders so we could show or hide node trees. You can

choose the approach you prefer, or mix and match.

 Summary
I hope this short chapter has given you a little palette cleanse before we dive into

recreating another game.

In the next chapter, we’re going to use the navigation and collective nodes to make

something even more intricate than Bouncy Cars.

If you’re looking for more of a challenge, try to change the drawing code, from

Chapter 4 or 5 or 7, to account for clusters of pixels. We’ll see what this code looks like in

the next chapter, so don’t stress if you can’t figure it out immediately.

Chapter 9 ColleCtive Nodes iN GeNerated Maps

https://doi.org/10.1007/978-1-4842-8795-8_4
https://doi.org/10.1007/978-1-4842-8795-8_5
https://doi.org/10.1007/978-1-4842-8795-8_7

157

CHAPTER 10

Recreating Invasion
Invasion is a game I recently built, inspired by world events. It’s a strategy game, where

you try to lead survivors through a war zone.

Invasion (2022)

It has a surprising amount of depth, despite being capable of running on a phone or

tablet. That’s thanks to the click-to-move navigation and solid content generation code.

In this chapter, we’re going to rebuild this game, putting into practice everything

we’ve learned so far.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_10

https://doi.org/10.1007/978-1-4842-8795-8_10#DOI

158

 Getting Set Up
We’ve been through this process quite a few times now, so I’m not going to go super deep

into any of it. Let’s summarize the steps we should follow and then let’s talk about polish:

 1. We need to set up a folder structure that supports our screens,

globals, scenery, and actors.

 2. Our screens should extend a base scene so that we can add screen

switching, transitions, and mobile support.

 3. We should base our level generation on pixel art, though we can

forgo a seeding system.

 4. The scenery code should account for collective nodes, which we

can see in the preceding screenshot.

I’ll go through each of these, with screenshots.

 Screens
Head over to Project ➤ Project Settings, and adjust the Viewport, Override, and Stretch

settings:

Chapter 10 reCreating invasion

159

Adjusting screen size

With this done, I set up the usual MarginContainer-based screen system:

Chapter 10 reCreating invasion

160

Screens for the game

I’ve added a new CanvasLayer → ColorRect node combination. We’re going to use

this for a fancy screen transition, but first, we need to add the screen switching and

menu buttons.

As before, we need to define the list of screens and their scene files:

This is from nodes/globals/constants.gd

extends Node

class_name Types

@export var game_over_scene : PackedScene

@export var menu_scene : PackedScene

@export var play_scene : PackedScene

@export var summary_scene : PackedScene

enum screens {

 game_over,

Chapter 10 reCreating invasion

161

 menu,

 play,

 summary,

}

@onready var screen_scenes := {

 screens.game_over: game_over_scene,

 screens.menu: menu_scene,

 screens.play: play_scene,

 screens.summary: summary_scene,

}

We can reference these in the standard screen switching code we’ve written a

few times:

This is from nodes/globals/screens.gd

extends Node

var root = null

var current_screen := Types.screens.menu

var current_screen_node : GameScreen

var is_changing_screen := false

func _ready() -> void:

 root = get_tree().get_root()

 current_screen = Types.screens.menu

 current_screen_node = root.get_children().back()

func change_screen(new_screen: Types.screens) -> void:

 if is_changing_screen:

 return

 is_changing_screen = true

 var new_screen_node : GameScreen = Constants.screen_scenes[new_screen].

instantiate()

 await load_new_screen(new_screen_node, new_screen)

 is_changing_screen = false

Chapter 10 reCreating invasion

162

func load_new_screen(new_screen_node: GameScreen, new_screen: Types.

screens) -> void:

 current_screen_node.queue_free()

 root.add_child(new_screen_node)

 current_screen = new_screen

 current_screen_node = new_screen_node

We can connect to this code from our MenuScreen buttons. Speaking of which, I want

to add a quit button to our main menu.

Only this time, I want to explore a new way of finding the button, so we can hide it

when we export the game to platforms that don’t support quitting.

The most common way we’ve referenced nodes is with the @onready var _button

:= $Path/To/Button notation. There’s another that doesn’t hard-code the relationships

between the button and its parent nodes. If we right-click on the button node and select

Access as Scene Unique Name, we can reference it using this new %Syntax.

Chapter 10 reCreating invasion

163

Using scene-unique names

Chapter 10 reCreating invasion

164

Our menu code looks like this:

This is from nodes/screens/menu_screen.gd

extends GameScreen

@onready var _quit_button := %QuitButton as Button

func _ready() -> void:

 _quit_button.visible = not OS.has_feature("HTML5")

func _on_play_button_pressed() -> void:

 Screens.change_screen(Constants.screens.play)

func _on_quit_button_pressed() -> void:

 get_tree().quit()

 Transitions
I had to make the Cover node invisible to see what I was doing with the menu nodes.

Let’s add the screen transition code so we can hide Cover with a fancy shader.

I like to implement transitions with signals and hooks. Hooks are methods with

special names that our code can call automatically. The flow can be quite confusing

at first:

Chapter 10 reCreating invasion

165

Signals and actions when switching screens

This requires adding signals to the screens we’re going to switch between, which is

where the common parent class comes in handy:

This is from nodes/screens/screen.gd

extends MarginContainer

class_name GameScreen

signal did_prepare_to_hide

signal did_hide_with_transition

signal did_prepare_to_show

signal did_show_with_transition

func prepare_to_hide(next_screen : Types.screens) -> void:

 did_prepare_to_hide.emit()

Chapter 10 reCreating invasion

166

func hide_with_transition(next_screen : Types.screens) -> void:

 did_hide_with_transition.emit()

func prepare_to_show(previous_screen : Types.screens) -> void:

 did_prepare_to_show.emit()

func show_with_transition(previous_screen : Types.screens) -> void:

 did_show_with_transition.emit()

We need to call these from our screen switching code. We should prepare the

screens for showing and hiding and only free the old screen when all the transitions have

happened.

The methods we’ve defined on the Screen node immediately emit their related

signals, so there aren’t any animations. We’re going to change that shortly. For now, let’s

call the appropriate Screen methods:

This is from nodes/globals/screens.gd

func load_new_screen(new_screen_node: GameScreen, new_screen: Types.

screens) -> void:

 current_screen_node.call_deferred("prepare_to_hide", new_screen)

 await current_screen_node.did_prepare_to_hide

 current_screen_node.call_deferred("hide_with_transition", new_screen)

 await current_screen_node.did_hide_with_transition

 current_screen_node.queue_free()

 root.add_child(new_screen_node)

 new_screen_node.call_deferred("prepare_to_show", current_screen)

 await new_screen_node.did_prepare_to_show

 new_screen_node.call_deferred("show_with_transition", current_screen)

 await new_screen_node.did_show_with_transition

 current_screen = new_screen

 current_screen_node = new_screen_node

We can await custom signals in the same way as we await signals from built-in

classes and methods. We can shuffle these calls and awaits around if we wanted the

operations to happen in parallel.

Chapter 10 reCreating invasion

167

The animation we’re going for only makes sense if they show and hide in

sequence, though.

 Adding Shaders
Let’s make the ColorRect appear and disappear with a fancy shader. I’m by no means a

shader expert; but I have put together a simple effect that will work for us.

Selecting the ColorRect node, we can go to Material ➤ New ShaderMaterial ➤ New

Shader. Save the resulting file anywhere, and then switch to the Shader Editor tab (on the

bottom of the window).

We can use the following shader code:

This is from nodes/screens/screen.gdshader

shader_type canvas_item;

uniform float amount : hint_range(0, 1) = 0.0;

uniform float bandSize = 40.0;

void fragment() {

 float yFraction = fract(FRAGCOORD.y / bandSize);

 float yDistance = abs(yFraction - 0.5);

 if (yDistance + UV.y > amount * 2.0) {

 discard;

 }

}

In short, this shader says that as the amount reaches 1.0, more of the screen should

be covered in the black banding:

Chapter 10 reCreating invasion

168

Adjusting shader amount in the property inspector

We can tween this amount property during the screen transitions. When we’re hiding

a screen, we should increase the amount to 1.0, and when we’re showing a screen, we

should do the opposite.

This is from nodes/screens/screen.gd

@onready var _cover := %Cover as ColorRect

var duration := 1.0

func prepare_to_hide(next_screen : Types.screens) -> void:

 _cover.material.set_shader_parameter("amount", 0.1)

 did_prepare_to_hide.emit()

func hide_with_transition(next_screen : Types.screens) -> void:

 var tween = get_tree().create_tween()

 tween.tween_method(func(value): _cover.material.set_shader_

parameter("amount", value), 0.0, 1.0, duration)

 await tween.finished

 did_hide_with_transition.emit()

Chapter 10 reCreating invasion

169

func prepare_to_show(previous_screen : Types.screens) -> void:

 did_prepare_to_show.emit()

func show_with_transition(previous_screen : Types.screens) -> void:

 var tween = get_tree().create_tween()

 tween.tween_method(func(value): _cover.material.set_shader_

parameter("amount", value), 1.0, 0.0, duration)

 await tween.finished

 did_show_with_transition.emit()

This is an interesting combination of lambda syntax and procedural tweening. We

prepare to show Cover by setting its amount parameter to 0.0, and then we tween this

value to 1.0 as we hide the screen.

 Planning Room Generation
Each Invasion level has some connected rooms. We can use a lot of the same code we

created for Bouncy Cars.

Layouts for rooms

We can use a layout image like this, where each room is 11 × 11 pixels:

• Purple pixels are paths.

• Red pixels are houses.

• Green pixels are trees.

• Gray pixels are gravestones.

The process for making a map from these layouts is as follows:

 1. Convert pixel data into cell data.

 2. Combine clusters of pixels into single cells.

 3. Create node instances for each cell.

Chapter 10 reCreating invasion

170

The added complication is that we want to generate adjoining “rooms” that the

player can travel between. The player should spawn in one of the rooms. This starting

room should also contain the “safe house” to lead survivors to.

A different room should contain the safe house, which acts as a way for the player to

complete the level.

We can visualize the rooms like this:

Connected rooms

Let’s start by creating a single room so that we can get the code for pixels → nodes

out of the way. Here are the nodes I have in my Room scene:

We need to do quite a bit of setup for the rooms to function. I’m going to show you a

hectic screenshot and then break down each part in sections:

Chapter 10 reCreating invasion

171

Room scene

You can save this scene to the nodes folder and attach an empty script to it. I have the

grid showing and the snap positions set to 12 × 12 pixels. The guides are at 66 pixels on

each axis. The exit area colliders are 11 grid cells wide, and their center is on 66 pixels.

Chapter 10 reCreating invasion

172

Snapping to the grid

 Tile Map
I'm basing this tile set on a kenney.nl asset pack that I’ve extracted and modified various

tiles from:

Chapter 10 reCreating invasion

https://kenney.nl/assets/micro-roguelike

173

Room sprites

Each of these modified sprites is 12 × 12 pixels; so I’ve set up a tile set sprite for

those dimensions and created the TileSet to have a road terrain. I had planned to use

more of these tiles in the pixel layouts, but I found these too noisy in the final game.

Feel free to use them in yours, as long as you can set up new pixel colors and adjust

the generation code to match.

12 × 12 pixel tiles, in an 11 × 11 unit layout, means each room has a size of 132 ×

132 pixels. This is smaller than our 180 × 180 screen size, but we’ll center the rooms and

the Aspect settings will scale them up to fill the center of the screen.

 Exits
As the player moves to the edges of the screen, we need to transition them into the

adjacent room if this exists. I’ve set up four Area2D nodes, with CollisionShape2D

children, to be able to detect this transition.

These can be on the edges of the level so that walking to the edge will start the

transition. We still need to code that part, though.

Chapter 10 reCreating invasion

174

 Sanctuaries
When the level begins, the player should start in a room that has a sanctuary in it. This is

where the player needs to bring survivors to rescue them.

We also need a visible sanctuary in the room through which the player exits. These

can look different, but I decided to make them look the same in my build of the game.

They’re blue ColorRect nodes in the screenshot, but you’re welcome to make them

custom nodes if you so choose. Keeping things simple to focus on the important parts of

this chapter.

 Arrows
If there are adjacent rooms, we want to indicate to the player that they can travel in the

direction of the adjacent room. Rooms won’t have an adjacent room on every side, so the

idea is to hide the arrows if they aren’t present on that edge of the room.

These overlapping nodes might look strange, but we’ll hide them by default and

show them when nothing else is in that position.

 Spawns
We need to show where the player can spawn when the level starts and when they move

from room to room. This can be hard-coded in a script, but I prefer a visual indicator.

That’s why I’ve created a Spawns Node2D to hold four Marker2D nodes. Our scripts

can use the position of these visual indicators to work out where the player should enter

a room, or where they should spawn.

It’s best that these positions do not intersect any doodads in our pixel art layout

image. Otherwise, the player might be stuck in the position they spawn in. Plan your

layout images so there is open space for these markers.

 The Remaining Nodes
All the remaining nodes are placeholders for where we’ll add doodads, soldiers, and

survivors. We could add them all to the same parent node; but that makes runtime

debugging a bit harder.

Chapter 10 reCreating invasion

175

 Generating One Room
Now that we’ve taken care of the structure for each room, we need to write some code to

handle drawing the tiles and doodads into each room. This code should take a random

room layout and work out which pixels are nodes and which are tiles.

The layouts in the pixel art image are already horizontally flipped. I don’t want to

vertically flip them because it would complicate the buildings.

First, we need to set up some constants:

This is from nodes/globals/constants.gd

@export var tree_scene : PackedScene

@export var grave_scene : PackedScene

@export var house_scene : PackedScene

@export var grass_scene : PackedScene

enum drawables {

 tree,

 grave,

 house,

 grass,

 path,

}

@onready var drawable_scenes := {

 drawables.tree: tree_scene,

 drawables.grave: grave_scene,

 drawables.house: house_scene,

 drawables.grass: grass_scene,

}

var drawable_colors := {

 drawables.tree: "22c55e",

 drawables.grave: "71717a",

 drawables.house: "ef4444",

 drawables.grass: "fbbf24",

 drawables.path: "a855f7",

}

Chapter 10 reCreating invasion

176

var drawable_tiles := [

 drawables.path,

]

var drawable_groups := [

 drawables.house,

]

var number_of_layouts := 8

var layout_width := 11

var sprite_width := 12

This is all quite like Chapter 7, but we’re also adding nodes into the mix. We need to

make a scene for each of those exports.

All the drawables extend on this node and code:

This is from nodes/drawables/drawable.gd

extends Node2D

class_name GameDrawable

var drawable_size : Vector2i

func set_drawable_size(size : Vector2i) -> void:

 drawable_size = size

Normally, we’d use the property syntax to define this kind of setter. It’s simpler,

instead, to use a method that we can override it in the child classes that need to.

The tree, grave, and grass scenes are all similar and simple. Let me show you what

one of them looks like, and you can follow this pattern for the others.

Chapter 10 reCreating invasion

https://doi.org/10.1007/978-1-4842-8795-8_7

177

Showing a random tree sprite

We followed a similar approach in Chapter 2. This gives roughly a 1/10 chance for

the one tree design to show, a 4/10 chance for the next, and a 7/10 chance for the third.

The graves and grass follow the same approach, with different sprites and

percentages. I use low probability for those, so the room isn't too noisy.

Chapter 10 reCreating invasion

https://doi.org/10.1007/978-1-4842-8795-8_2

178

Here’s that code in a more readable format:

This is from nodes/drawables/tree_drawable.gd

extends GameDrawable

func _ready() -> void:

 var chance := randf()

 var sprites := get_children()

 for sprite in sprites:

 sprite.visible = false

 if chance >= 0.90:

 sprites[2].visible = true

 elif chance >= 0.60:

 sprites[1].visible = true

 elif chance >= 0.30:

 sprites[0].visible = true

The houses are a bit more complicated, but they follow the approach we learned

about in the previous chapter:

Chapter 10 reCreating invasion

179

Showing variable-size houses

I went ahead and created a TileMap node in each of the sizes our layouts support.

There are nine of them, most of which we need to hide via script. We should only be

showing the one required by the size given during the generation phase. Here’s how we

do that:

This is from nodes/drawables/house_drawable.gd

extends GameDrawable

func set_drawable_size(size : Vector2i) -> void:

 super.set_drawable_size(size)

 for group in get_children():

 for variation in group.get_children():

 variation.visible = false

Chapter 10 reCreating invasion

180

 var intended_name := str(drawable_size.x) + "x" + str(drawable_size.y)

 var intended_node := get_node(intended_name)

 var index = randi() % intended_node.get_child_count()

 (intended_node.get_child(index) as TileMap).visible = true

We can call the set_drawable_size method, on the parent class, with the super

keyword. Next, we can plan an instance of the Room in the PlayScreen:

Adding a test Room instance to PlayScreen

Notice how I’ve put the Room at -66 × -66 pixels. This is half the width and height, so

it is in the center of the screen.

If we launch the game, we should see the sanctuaries and arrows. Let’s work on the

code that draws doodads and tiles.

We’ll need three methods:

• Generating a random room layout from the pixel art layout file

• Drawing TileMap road tiles

• Drawing drawables for everything else

The layout method looks much like the ones we’ve made before:

This is from nodes/globals/generation.gd

extends Node

@export var layout_texture : Texture2D

Chapter 10 reCreating invasion

181

func _ready() -> void:

 randomize()

func get_room_layout() -> Array:

 var image := layout_texture.get_image()

 var offset : int = (randi() % Constants.number_of_layouts) * Constants.

layout_width

 var room := []

 for y in range(Constants.layout_width):

 var row := []

 for x in range(Constants.layout_width):

 var drawable_type : Types.drawables

 var pixel_color = image.get_pixel(x + offset, y).to_html(false)

 for type in Constants.drawable_colors.keys():

 if pixel_color == Constants.drawable_colors[type]:

 drawable_type = type

 row.push_back(drawable_type)

 room.push_back(row)

 return room

This gives us a 2D array of tile and node types. We can pass to the other methods we

need to make. First up, the TileMap drawing method:

This is from nodes/globals/generation.gd

func add_room_tiles(tilemap : TileMap, layout : Array) -> void:

 var tiles : Array[Vector2i] = []

 for y in range(Constants.layout_width):

 for x in range(Constants.layout_width):

 if not layout[y][x] in Constants.drawable_tiles:

 continue

 tiles.push_back(Vector2i(x, y))

 tilemap.set_cells_terrain_connect(0, tiles, 0, 0, false)

Chapter 10 reCreating invasion

182

This is like the one we made for Bouncy Cars. We can pair it with a method that

creates and places drawable nodes:

This is from nodes/globals/generation.gd

func add_room_doodads(node : Node2D, layout : Array) -> void:

 var ignored : Array[Vector2i] = []

 for y in range(Constants.layout_width):

 for x in range(Constants.layout_width):

 var current : Types.drawables = layout[y][x]

 if ignored.has(Vector2i(x, y)):

 continue

 if not Constants.drawable_scenes.keys().has(current):

 continue

 var drawable_size : Vector2i

 if current in Constants.drawable_groups:

 var w := 0

 var h := 0

 for i in range(5):

 if layout[y + i][x] != current:

 break

 for j in range(5):

 if layout[y + i][x + j] != current:

 break

 ignored.append(Vector2i(x + j, y + i))

 if i == 0:

 w += 1

 h += 1

 drawable_size = Vector2i(w, h)

 var drawable = Constants.drawable_scenes[current].instantiate()

as GameDrawable

Chapter 10 reCreating invasion

183

 node.add_child(drawable)

 drawable.set_drawable_size(drawable_size)

 drawable.position = Vector2(

 x * Constants.sprite_width,

 y * Constants.sprite_width,

)

This is the code I hinted at, toward the end of the previous chapter:

• We loop through the rows and columns (y → x), ignoring all TileMap

types and pixels we’ve already accounted for as part of a cluster.

• We do a bit more processing for each type in the drawable_

groups array.

• We loop from 0 → 4 to see if there are matching cell types to

the right.

• We loop from 0 → 4 to see if there are matching cell types

downward.

• We combine these into a new drawable_size variable and add

individual cells to the ignore list.

• Once we’ve gone through all the cells, we create new nodes and

assign the drawable_size to each.

With these methods in place, we can adjust the Room script so that it generates itself:

This is from nodes/room.gd

extends Node2D

class_name GameRoom

@onready var _tiles := %Tiles as TileMap

@onready var _doodads := %Doodads as Node2D

func _ready() -> void:

 var layout : Array = Generation.get_room_layout()

 Generation.add_room_tiles(_tiles, layout)

 Generation.add_room_doodads(_doodads, layout)

Chapter 10 reCreating invasion

184

The room is now responsible for adding its own tiles and nodes. The results are

quite lovely:

Rooms that draw themselves

Feel free to add as many other decorations as you like. One thing I like about our

houses is that we can create any number of variations. These could include houses that

have second floors and yards. The tile set has some lovely decorations to achieve this.

 Generating Many Rooms
Now that we can create a single room, it’s time to create a few and link them together.

This should include the following details:

• The starting room must have a rescue sanctuary in it.

• There should be a limited number of rooms, branching out from it.

Chapter 10 reCreating invasion

185

• The final room should have an exit sanctuary in it.

• The arrows should only be visible on edges where there is an adjacent

room present.

Let’s build this function in stages, starting with the code to generate the first room:

This is from nodes/globals/generation.gd

func make_rooms(parent) -> void:

 Variables.room_positions_available = []

 Variables.room_positions_taken = []

 Variables.rooms = []

 var first_room = Constants.room_scene.instantiate() as GameRoom

 parent.add_child(first_room)

 first_room.room_position = Vector2i(0, 0)

 first_room.room_type = Constants.rooms.first

 first_room.position = Vector2(-66, -66)

 var rooms_left = Constants.number_of_rooms - 1

This code begins by resetting variables in a new global: Variables. Here’s what the

script for that global looks like:

This is from nodes/globals/variables.gd

extends Node

var room_positions_available : Array[Vector2i]= []

var room_positions_taken : Array[Vector2i] = []

var rooms : Array[GameRoom] = []

These arrays are typed to only allow values of the defined types. The make_rooms

method continues by creating a new instance of the room scene. The Constants script

also gets a few new properties:

This is from nodes/globals/constants.gd

@export var room_scene : PackedScene

var number_of_rooms := 8

Chapter 10 reCreating invasion

186

enum rooms {

 first,

 other,

 last,

}

enum room_neighbors {

 top,

 right,

 bottom,

 left,

}

Don’t forget to reference the room scene through the property inspector or you’ll

get a nasty error message when running this code, something like Nonexistent function

‘instantiate’ in base ‘Nil’.

Once we create and position the first room, we can get all the potential neighbors.

This requires a few methods in the Room script:

This is from nodes/room.gd

var room_type : Types.rooms

var room_position : Vector2i

var sanctuary_side : Types.room_neighbors

func get_neighbor_positions() -> Dictionary:

 return {

 Types.room_neighbors.top: Vector2i(room_position.x, room_

position.y - 1),

 Types.room_neighbors.right: Vector2i(room_position.x + 1, room_

position.y),

 Types.room_neighbors.bottom: Vector2i(room_position.x, room_

position.y + 1),

 Types.room_neighbors.left: Vector2i(room_position.x - 1, room_

position.y),

 }

Chapter 10 reCreating invasion

187

func get_neighbor_position(neighbor : Types.room_neighbors) -> Vector2i:

 return get_neighbor_positions()[neighbor]

func has_neighbor(neighbor : Types.room_neighbors) -> bool:

 var neighbor_position = get_neighbor_position(neighbor)

 return Variables.room_positions_taken.has(neighbor_position)

func get_neighbor(neighbor : Types.room_neighbors) -> GameRoom:

 var neighbor_position = get_neighbor_position(neighbor)

 for next_room in Variables.rooms:

 if next_room.room_position == neighbor_position:

 return next_room

 return null

func free_side() -> int:

 for neighbor in Types.room_neighbors.values():

 if not has_neighbor(neighbor):

 return neighbor

 return -1

These are all helpers we can use to work out whether there are rooms or could be

rooms around this one. We need this for a couple of reasons:

• When we’re generating the grid of rooms and need to figure out the

available spots

• When we’re showing or hiding arrows and sanctuaries

That first part looks like this:

This is from nodes/globals/generation.gd

func make_rooms(parent) -> void:

 # ...snip

 var rooms_left = Constants.number_of_rooms - 1

 Variables.room_positions_available += first_room.get_neighbor_

positions().values()

 Variables.room_positions_taken.append(first_room.room_position)

 Variables.rooms.append(first_room)

Chapter 10 reCreating invasion

188

 Variables.room_positions_available.erase(

 Variables.room_positions_available[randi() % Variables.room_

positions_available.size()]

)

We find all the neighbor positions and add them to the list from which we’ll generate

the next room. Before we do that, we remove one of the potential neighbor positions. We

want to have a sanctuary in the first room. This will be on the “free side.”

Now, we need to build the rest of the rooms. Each room follows a similar creation

process, though they’re positioned off-screen.

This is from nodes/globals/generation.gd

func make_rooms(parent) -> void:

 # ...snip

 Variables.room_positions_available.erase(

 Variables.room_positions_available[randi() % Variables.room_

positions_available.size()]

)

 while rooms_left > 0:

 var next_room_position = Variables.room_positions_available[randi()

% Variables.room_positions_available.size()]

 Variables.room_positions_available.erase(next_room_position)

 var next_room_type : Types.rooms

 if rooms_left == 1:

 next_room_type = Types.rooms.last

 else:

 next_room_type = Types.rooms.other

 var next_room = Constants.room_scene.instantiate() as GameRoom

 parent.add_child(next_room)

 next_room.room_position = next_room_position

 next_room.room_type = next_room_type

 next_room.position = Vector2(-999, -999)

Chapter 10 reCreating invasion

189

Can you guess why we need to store the available room positions and created rooms?

We need these in the Room helper methods, or we could have used local variables. We’re

also setting the types of most of the rooms to other and the last one to last.

The final bit of code needs to set the sanctuary side of the first and last rooms and

fetch any new potential room positions:

This is from nodes/globals/generation.gd

func make_rooms(parent) -> void:

 # ...snip

 next_room.position = Vector2(-999, -999)

 if next_room_type == Types.rooms.last:

 var free_side = next_room.free_side()

 next_room.sanctuary_side = free_side

 Variables.room_positions_taken.append(next_room_position)

 Variables.rooms.append(next_room)

 for neighbor_position in next_room.get_neighbor_positions().

values():

 if not Variables.room_positions_taken.has(neighbor_position)

and not Variables.room_positions_available.has(neighbor_

position):

 Variables.room_positions_available.append(neighbor_

position)

 rooms_left -= 1

 var free_side = first_room.free_side()

 first_room.sanctuary_side = free_side

Be sure to check out the sample project code for this full listing, since it’s too large

for me to include here. We can now remove the instance of Room we manually placed in

PlayScreen and call the make_rooms method to dynamically place rooms:

Chapter 10 reCreating invasion

190

This is from nodes/screens/play_screen.gd

extends GameScreen

@onready var _stage := %Stage as Control

func _ready() -> void:

 Generation.make_rooms(_stage)

The only way to see this code in action, before the player can walk around in them,

is to open the remote debugger. If you run the game and then look above the node tree,

you’ll see a Remote and a Local button.

When you’re designing, then you should be looking at the Local view. If the game is

running and you’d like to see the nodes and their values, then you can click Remote and

inspect things.

Inspecting rooms in the remote view

Chapter 10 reCreating invasion

191

 Hiding Invalid Arrows and Sanctuaries
Before we add player movement, let’s clean up the look of the rooms by hiding invalid

sanctuaries and arrows. Let’s define a new Room method for this:

This is from nodes/room.gd

@onready var _sanctuaries := %Sanctuaries as Node2D

@onready var _arrows := %Arrows as Node2D

func hide_invalid_stuff() -> void:

 for node in _sanctuaries.get_children():

 node.visible = false

 for node in _arrows.get_children():

 node.visible = false

 for side in ["top", "right", "bottom", "left"]:

 var name = side.capitalize()

 if has_neighbor(Types.room_neighbors[side]):

 _arrows.get_node(name).visible = true

 if [Types.rooms.first, Types.rooms.last].has(room_type):

 if sanctuary_side == Types.room_neighbors[side]:

 _sanctuaries.get_node(name).visible = true

It’s interesting that we can use square-bracket syntax on enums, giving us the ability

to use a dynamic string. We need to call this method in the generation code:

This is from nodes/globals/generation.gd

var free_side = first_room.free_side()

first_room.sanctuary_side = free_side

for room in Variables.rooms:

 room.hide_invalid_stuff()

Chapter 10 reCreating invasion

192

 Moving Around in the Rooms
We’re going to add click-to-move navigation. This means putting into practice some

things we learned in Chapter 8.

Let’s create a player character, based on some of what we learned:

Setting up the player

Chapter 10 reCreating invasion

https://doi.org/10.1007/978-1-4842-8795-8_8

193

This Player node consists of the following things:

• It is a CharacterBody2D node.

• It has a Sprite2D node for visuals.

• It has a CollisionShape2D node to work out collisions.

• It has a NavigationAgent2D node to work out pathing.

The code for it differs from the code we wrote previously. We’re using the

NavigationAgent2D node to calculate a path, and we’re using that path in a different

way. It still works as expected, but now we have a bit more control over what we do with

the path information.

Here’s the code in a format that’s easier to read:

This is from nodes/player.gd

extends CharacterBody2D

class_name GamePlayer

@onready var _agent := %Agent as NavigationAgent2D

var speed := 1000

func _ready() -> void:

 _agent.velocity_computed.connect(

 func(safe_velocity : Vector2) -> void:

 velocity = safe_velocity

 move_and_slide()

)

 _agent.set_target_location(global_position)

func _unhandled_input(event: InputEvent) -> void:

 if event is InputEventMouseButton:

 if event.is_pressed():

 _agent.set_target_location(event.position)

 _agent.get_next_location()

func _physics_process(delta: float) -> void:

 if not _agent.is_navigation_finished():

Chapter 10 reCreating invasion

194

 var target := _agent.get_next_location()

 velocity = global_position.direction_to(target) * speed

 _agent.set_velocity(velocity)

Go through each of the scenes and make sure that all the nodes with green icons

have their Mouse Filter settings to Ignore. This is so that the _unhandled_input method is

called on the GamePlayer class, without the other controls intercepting it.

Another important thing to note is that we must call the get_next_location method

at least once so that the NavigationAgent2D node can determine whether the navigation

is finished. We continue to call it inside the _physics_process method so that the path

can update if colliders move.

remember to check the Avoidance Enabled check box so that the velocity_
computed signal is emitted.

We also need to change the Room scene so that it has navigation data and injects a

player into the first room:

Adding navigation mesh data to Room

Chapter 10 reCreating invasion

195

This is a NavigationRegion2D node, with a custom rectangle of navigation data

drawn into the Room. Chapter 8 explains this in a bit more detail, but the gist is that this

area is used to calculate where NavigationAgent2D nodes can navigate.

We can inject the GamePlayer node through the PlayScreen scene:

This is from nodes/screens/play_screen.gd

func _ready() -> void:

 Generation.make_rooms(_stage)

 Variables.player = Constants.player_scene.instantiate()

 Variables.rooms[0].add_child(Variables.player)

This depends on an exported player_scene reference, so don’t forget to also set

that up. This code adds it to the first room. The player is also stored in a variable on the

Variables global so that we can get it from within the rooms.

Launch the game and click around a bit. You should see the step layer move to

your cursor.

 Transitioning to Neighboring Rooms
It’s time we added the ability to move between rooms. In the beginning of the chapter,

we added Area2D nodes that would serve as the doorways between rooms. We’re now

going to put them to use.

When the player’s body collides with the exits, we want to start the transition into

another room. The trouble is that they can’t just be added to the new room in the same

position, or they’ll trigger the transition in that room as well.

We need to disable all the colliders so that only one transition happens. Let’s add the

colliders to groups so that we can disable them without a lot of traversal code:

Chapter 10 reCreating invasion

https://doi.org/10.1007/978-1-4842-8795-8_8

196

Adding nodes to groups for bulk actions

Next, let’s build a function to move the player from their current room to the

new room:

This is from nodes/room.gd

func add_player(side : Types.room_neighbors) -> void:

 call_deferred("disable_colliders")

 await get_tree().create_timer(0.1).timeout

 var old_room = Variables.player.get_parent()

 if old_room:

 old_room.remove_child(Variables.player)

 old_room.position = Vector2(-999, -999)

 position = Vector2(-66, -66)

 add_child(Variables.player)

 Variables.player.reposition(get_spawn_position(side))

 await get_tree().create_timer(0.1).timeout

 call_deferred("enable_colliders")

func disable_colliders() -> void:

 get_tree().call_group("exit_colliders", "set_disabled", true)

func enable_colliders() -> void:

 get_tree().call_group("exit_colliders", "set_disabled", false)

func _on_top_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

Chapter 10 reCreating invasion

197

 return

 var from_side = Types.room_neighbors.top

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.bottom)

func _on_right_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.right

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.left)

func _on_bottom_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.bottom

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.top)

func _on_left_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.left

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.right)

The purpose of this function is to take the player from the current room they’re in to

the next room. We can use the call_group method to run a method on every node in the

exit_colliders group. It runs asynchronously, which means we need to wait for a short

time for all the colliders to be disabled.

Chapter 10 reCreating invasion

198

godot 3 had a SceneTree.idle_frame signal, but i cannot find a suitable
substitute for it in godot 4. this code is the simplest way i could come up with to
perform the scene transition.

the only downside is that waiting for a timer is generally not considered a good
practice because it opens the code up to potential race conditions. i’m not as
concerned about this because i know there are at most eight colliders that we
need to disable. it's a quick process.

We could reduce the timeout to something far smaller, and this solution would
still work.

If the player is already in a room, then we remove them from it and move it off-

screen. We follow this up by adding them to the next room and position it in the center of

the screen. We need to connect the body_entered signals of each Area2D to the listener

methods we've defined here.

We also need to define those reposition and get_spawn_position methods, so let’s

start with the latter:

This is from nodes/room.gd

@onready var _spawns := %Spawns as Node2D

func get_spawn_position(neighbor : Types.room_neighbors) -> Vector2:

 var spawn_name := Types.room_neighbors.keys()[neighbor].capitalize()

as String

 var spawn_node := _spawns.get_node(spawn_name) as Marker2D

 return spawn_node.position

This method is a shortcut for finding the named Spawns → Marker2D node and

returning its position. Here’s what the reposition method looks like:

This is from nodes/player.gd

func reposition(new_position : Vector2) -> void:

 position = new_position

 _agent.set_target_location(global_position)

 _agent.get_next_location()

Chapter 10 reCreating invasion

199

We could expose the _agent variable so that other classes could set these properties

manually. But the NavigationAgent2D’s target is linked to the GamePlayer’s position, so

this helper makes sense.

Since we have the add_player method, we can use it when we add the player to the

first room:

This is from nodes/screens/play_screen.gd

func _ready() -> void:

 Generation.make_rooms(_stage)

 Variables.player = Constants.player_scene.instantiate()

 Variables.rooms[0].add_player(Types.room_neighbors.top)

The player will now spawn at the same position as the Top Marker2D node. When

they move transition to a room above their current one, they’ll be positioned at the

Bottom Marker2D node.

 Spawning Survivors
A game about rescuing survivors needs survivors to rescue. Let’s make a little survivor

node and then spawn it into some of the rooms. It's like the player’s character:

Setting up the Survivor node

We need another Area2D node to act as the acquisition radius. When the player

enters this radius, the survivor will attach themselves to the player. They'll continue to

follow the player until they reach the sanctuary.

Chapter 10 reCreating invasion

200

The Room node can be responsible for spawning these survivors. The best place to

spawn them would be on top of a grass node, since these should always be navigable.

Alternatively, you could create a new pixel color for the spots survivors should spawn.

We can also start the Survivor script off with most of the code in the Player script:

This is from nodes/survivor.gd

extends CharacterBody2D

class_name GameSurvivor

@onready var _agent := %Agent as NavigationAgent2D

var speed := 1000

func _ready() -> void:

 _agent.velocity_computed.connect(

 func(safe_velocity : Vector2) -> void:

 velocity = safe_velocity

 move_and_slide()

)

 _agent.set_target_location(global_position)

func _physics_process(delta: float) -> void:

 if not _agent.is_navigation_finished():

 var target := _agent.get_next_location()

 velocity = global_position.direction_to(target) * speed

 _agent.set_velocity(velocity)

func reposition(new_position : Vector2) -> void:

 position = new_position

 _agent.set_target_location(global_position)

 _agent.get_next_location()

To allow the survivors to spawn on grass drawables, we need to make the layout

available to other methods:

Chapter 10 reCreating invasion

201

This is from nodes/room.gd

var layout : Array

func _ready() -> void:

 layout = Generation.get_room_layout()

 Generation.add_room_tiles(_tiles, layout)

 Generation.add_room_doodads(_doodads, layout)

 spawn_survivors()

The spawn_survivors method we follow this up with needs to randomly select a

grass tile for the survivor spawn:

This is from nodes/room.gd

@onready var _survivors := %Survivors as Node2D

func spawn_survivors() -> void:

 var used_coordinates : Array[Vector2i] = []

 for i in randi_range(Constants.minimum_survivors_in_room, Constants.

maximum_survivors_in_room):

 var survivor := Constants.survivor_scene.instantiate() as

GameSurvivor

 _survivors.add_child(survivor)

 var coordinates = Vector2i(randi() % Constants.layout_width,

randi() % Constants.layout_width)

 var drawable_type = layout[coordinates.y][coordinates.x]

 while drawable_type != Types.drawables.grass or used_coordinates.

has(coordinates):

 coordinates = Vector2i(randi() % Constants.layout_width,

randi() % Constants.layout_width)

 drawable_type = layout[coordinates.y][coordinates.x]

 used_coordinates.push_back(coordinates)

 survivor.reposition(coordinates * Constants.sprite_width)

Chapter 10 reCreating invasion

202

This includes three new constants:

• Constants.minimum_survivors_in_room

• Constants.maximum_survivors_in_room

• Constants.survivor_scene

I’ll leave it to you to set these up. After creating the GameSurvivor instance, we keep

attempting to select an unoccupied position for them. Once found, we can spawn the survivor.

 Rescuing Survivors
The last thing we’re going to do together is give the survivors more functionality:

• They should be able to follow the player.

• We should allow them to move between rooms.

• The player should be able to drop them off at the sanctuary.

GameSurvivor already has an acquisition Area2D node, so we can tie into the signal

emitted when a body enters it:

This is from nodes/survivor.gd

var following : GamePlayer

func _on_acquisition_body_entered(body : Node2D) -> void:

 if body is GamePlayer:

 body.survivors.push_back(self)

 following = body

func _on_follow_timer_timeout() -> void:

 if following:

 _agent.set_target_location(following.global_position)

I’ve attached a signal listener to the Survivor’s Acquisition node, in which I check if

the body entering is a player. If so, I set the following variable to the player instance.

You’ll also notice I created a timer, called FollowTimer. The timeout signal is useful for

updating the survivor’s NavigationAgent2D target location. The timer is set to Autostart

and is not set as a One Shot. This means it will start automatically and keep timing out.

Chapter 10 reCreating invasion

203

Don’t forget to add a survivors array to the player class, where we can store
references to survivors following the player.

When we launch the game, we’re greeted by an unfortunate side effect of the current

NavigationAgent2D system. Nested Area2D and CollisionShape2D nodes will be

included in the avoidance detection logic.

This means that we cannot actually get inside the acquisition radius to acquire the

survivor.

Nested CollisionShape2D nodes interfering with collision avoidance

I could have skipped over this part by going straight to the alternative. I chose,

instead, to highlight this issue because it’s likely to cause you a lot of headaches if you

don’t know it’s there.

Chapter 10 reCreating invasion

204

One solution to this problem is not to use an Area2D node to detect acquisition. We

can use the distance from the player’s position to the survivor’s position:

This is from nodes/survivor.gd

@onready var _follow_timer := %FollowTimer as Timer

var following : GamePlayer

func _on_follow_timer_timeout() -> void:

 if not following and Variables.player.global_position.distance_

to(global_position) < 50:

 following = Variables.player

 Variables.player.survivors.push_back(self)

 if following:

 _agent.set_target_location(

 following.global_position

)

We can delete the Acquisition Area2D node, since we don’t need it anymore.

i also spent some time fiddling with the Survivor → agent Path Desired Distance
and Target Desired Distance. i arrived at 5 pixels being a good setting for both of
these. since we’re not controlling the survivors, it’s ok if they aren’t as responsible
or accurate as the player.

these increased values mean their movement will be smoother and their targeting
more forgiving.

Additionally, I saw that the survivors were sometimes hidden behind the doodads.

I moved the Doodads node above the Survivors node so that they display above the

doodads.

We can make the survivors move to different rooms in the same method we use to

allow the player to transition to different rooms:

Chapter 10 reCreating invasion

205

This is from nodes/room.gd

func add_player(side : Types.room_neighbors) -> void:

 call_deferred("disable_colliders")

 await get_tree().create_timer(0.1).timeout

 var old_room = Variables.player.get_parent()

 if old_room:

 old_room.remove_child(Variables.player)

 old_room.position = Vector2(-999, -999)

 for survivor in Variables.player.survivors:

 survivor.get_parent().remove_child(survivor)

 position = Vector2(-66, -66)

 add_child(Variables.player)

 Variables.player.reposition(get_spawn_position(side))

 for survivor in Variables.player.survivors:

 _survivors.add_child(survivor)

 survivor.reposition(Variables.player.global_position)

 await get_tree().create_timer(0.1).timeout

 call_deferred("enable_colliders")

We need to remove the survivors from their parent before we can add them to the

new room. Remember, they’re children of the Survivors node, so we can’t remove them

from the room. If we added them to a group, then we can use the call_group method

instead of needing to find their parents.

Once the player is in the new room, we can add the survivors to the new room. Since

we can now take survivors back into our starting room, we can rescue them:

This is from nodes/room.gd

func _on_top_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

Chapter 10 reCreating invasion

206

 var from_side = Types.room_neighbors.top

 if room_type == Types.rooms.first:

 rescue_survivors(from_side)

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.bottom)

func _on_right_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.right

 if room_type == Types.rooms.first:

 rescue_survivors(from_side)

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.left)

func _on_bottom_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.bottom

 if room_type == Types.rooms.first:

 rescue_survivors(from_side)

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.top)

func _on_left_body_entered(body : PhysicsBody2D) -> void:

 if not body is GamePlayer:

 return

 var from_side = Types.room_neighbors.left

 if room_type == Types.rooms.first:

 rescue_survivors(from_side)

 if has_neighbor(from_side):

 get_neighbor(from_side).add_player(Types.room_neighbors.right)

Chapter 10 reCreating invasion

207

func rescue_survivors(side : Types.room_neighbors) -> void:

 if side != sanctuary_side:

 return

 for survivor in Variables.player.survivors:

 Variables.player.survivors.erase(survivor)

 survivor.queue_free()

This looks like a lot of code, but that’s only because there is some repetition for the

different Area2D signals. The gist of it is that we have some special functionality if the

current room is the first room.

If the player is in the first room and they are on the sanctuary side, then all the

survivors following them are rescued.

We could collapse this code even further by using a common signal method, but

that’s a bit more complicated than I want to make this code.

 Taking Things Further
This is where we stop working on this project together, but there’s still loads more

you can do to it. Here are some features that will bring it closer to my original build of

Invasion:

 1. Have a visual indicator that appears when you are close to a

survivor, for how close you need to be to get them. In my version, I

used a yellow circle, so the player can see how close they must get

to the survivor.

 2. Show how many survivors there are to rescue, somewhere on the

screen, and track how many have already been rescued.

 3. Spawn soldiers, and have them patrol between random road

drawables. They can have a similar indicator for how close you

can get to them before they start to chase you.

 4. Add a dialog system to display conversations between the player,

soldiers, and survivors.

 5. Have a hope counter, which continually drains but can be

increased when you rescue a survivor.

Chapter 10 reCreating invasion

208

 6. If soldiers catch you while you have no following survivors,

decrease the player’s hope.

 7. If soldiers catch you while you have following survivors, make

them detain the survivors. You can decide what the hope penalty

is for these, so it might be more favorable to be caught alone or

with company.

 8. Add an exit transition, and populate the summary screen with

data about the current state of hope.

 9. Add a game-over transition for when hope has completely

run out.

 Summary
This has been an ambitious chapter, wherein we built the majority of the functionality

for Invasion. It’s not exactly what I released, but it includes everything fundamental. It

gives you a good jumping-off point for customization and novel mechanics of your own.

I am so proud of what we’ve covered in this chapter and the book as a whole. This is

our third game, and it showcases the majority of what I’d consider practical procedural

content generation. I encourage you to take your time with this chapter and project. If

you feel like there are topics that you don’t have a handle on, spend some time going

over the code and researching specifics in the Godot community.

If you can produce a game like Invasion, you’re ready to use these skills in your

own games.

In the following chapter, we’re going to look at generating and adhering to stricter

paths of movement. This will be useful for games where you want richer NPC movement

or less free player movement.

Chapter 10 reCreating invasion

209

CHAPTER 11

Paths and Path Followers
We’ve discussed moving the player with keyboard and mouse input. Depending on the

game, these might allow for too much freedom. What if we want to make experiences

that are more “on rails”?

In this chapter, we’re going to explore the ins and outs of path-based movement.

We’ll create a basic path follower, followed by more complex chain pathing.

 Defining Paths
Let’s create a new experiment, called PathsExperiment, and set it as the experiment that

loads on PlayScreen. We’ll populate it with a Path2D node, a PathFollow2D node, and a

ColorRect node for visibility:

Setting up to follow paths

You can draw the path in the same way that you’d draw a collision polygon. Select the

Path2D node and click the Add Point button to start drawing path points.

If you were to create a PathFollow2D node, not as a child of a Path2D node, you’d see

an error. This is because PathFollow2D nodes only work as children of a Path2D node.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_11

https://doi.org/10.1007/978-1-4842-8795-8_11#DOI

210

PathFollow2D nodes have a Progress property, which represents the distance along

the path that the follower has moved. It starts at zero, but as you increase that value,

you’ll see the follower move along the path.

They also have a Progress Ratio property that represents the distance along the path

they have travelled, but as a value between 0 and 1. As you change one of these sliders,

the the other will change to match.

As you can imagine, it’s possible to tween the progress values.

 Moving Along the Path
Imagine we want to allow the player to click somewhere near the path and have the

player character move to the nearest point along the path.

To do this, we’d need to first work out what the nearest point is. We’d need to be able

to tell whether it was “forward” or “backward” path movement. Then, we could animate

the movement until the player character was around the path point.

Let’s figure out the first bit:

This is from experiments/paths_experiment.gd

extends GameExperiment

@onready var _path := %Path2d as Path2D

var debug_points := []

func _unhandled_input(event: InputEvent) -> void:

 if event is InputEventMouseButton:

 if event.is_pressed():

 var nearest_point = get_nearest_point(event.position)

 debug_points.append(nearest_point)

 await get_tree().create_timer(5.0).timeout

 debug_points.erase(nearest_point)

func _process(delta: float) -> void:

 queue_redraw()

func get_nearest_point(target : Vector2) -> Vector2:

 return _path.curve.get_closest_point(target)

Chapter 11 paths and path Followers

211

func _draw() -> void:

 for point in debug_points:

 draw_circle(point - global_position, 10, Color.BLACK)

I’ve chosen to draw little black dots at the nearest point along the path. When the

player clicks on the game screen, we loop through the points of the path. These are not

the ones that we used to draw the path, but rather the calculated points in between.

Notice we’re using scene unique names for the Path2D and PathFolow2D nodes.

We add these to an array, and after a five-second delay, we remove them again.

Adding _process and _draw methods allows us to draw the dots. The drawing canvas is

cleared every frame, so we don’t need to do that ourselves. Queue_redraw is a built-in

function that forces Godot to call _draw so that our dots show up.

The results are quite pleasing:

Drawing dots at the closest points to our clicks

Chapter 11 paths and path Followers

212

The dots are offset a bit, but that’s to do with transformations, and it’s not a huge

deal. Now that we can get the nearest point and actually see it, we can move toward it.

Let’s define a speed variable and put the movement code in the _process method:

This is from experiments/paths_experiment.gd

extends GameExperiment

@onready var _path := %Path2d as Path2D

@onready var _path_follow := %PathFollow2d as PathFollow2D

var debug_points := []

var nearest_point : Vector2

var speed := 200

func _unhandled_input(event: InputEvent) -> void:

 if event is InputEventMouseButton:

 if event.is_pressed():

 var point = get_nearest_point(event.position)

 nearest_point = point

 debug_points.append(point)

 await get_tree().create_timer(5.0).timeout

 debug_points.erase(point)

func move_to_point(target : Vector2, delta : float) -> void:

 var points := _path.curve.get_baked_points()

 var target_i : int

 var current_i : int

 for i in range(points.size()):

 if points[i].distance_to(target) < 5:

 target_i = i

 if points[i].distance_to(_path_follow.position) < 5:

 current_i = i

 if abs(current_i - target_i) > 5:

 if target_i < current_i:

Chapter 11 paths and path Followers

213

 _path_follow.progress -= delta * speed

 else:

 _path_follow.progress += delta * speed

func get_nearest_point(target : Vector2) -> Vector2:

 return _path.curve.get_closest_point(target)

func _process(delta: float) -> void:

 queue_redraw()

 move_to_point(nearest_point, delta)

func _draw() -> void:

 for point in debug_points:

 draw_circle(point - global_position, 10, Color.BLACK)

The main change is the addition of the move_to_point method, which uses the

latest nearest_position as a target to move toward. We loop through the path’s points

until we find

 1. The current follower’s point index

 2. The target point’s index

Knowing these, we can tell if the follower needs to move forward or backward. We

can then increase or decrease the follower’s offset with delta and speed.

Launch the game and click around. It’s wonderful to see the follower try to get as

close to your click as possible while sticking to the path.

 Moving Between Paths
Following a single path is already cool, but I want to take things a step further. Imagine

we want to build maps out of many different paths. In order for a follower to move

throughout the whole level, we’d need to allow them to switch between different paths.

Chapter 11 paths and path Followers

214

Moving along multiple paths

In this situation, we’d need to be able to link paths together and decide when we

want to switch to a new path. The simplest way to link them together would be to create

a Path2D subclass that has a property for “connected paths”:

Chapter 11 paths and path Followers

215

Path2D subclass

We can replace our existing Path2D node with one of these and add a couple more.

They have a new Connected Paths property that we can use to create the associations

between them. If you have trouble drawing separate paths for each ConnectedPath2D

node, remove all the points and make the Curve properties unique to each

ConnectedPath2D.

Connecting paths together

Chapter 11 paths and path Followers

216

Now, our code needs to change. It’s going to be simpler to delete all the code in

experiments/paths_experiment.gd and start over.

 1. Instead of finding the closest point on a single known path, we

need to look for the closest point on the closest path.

 2. We can calculate which paths to take and how long to travel along

them to get to that point.

Let’s add a method to address the first task:

This is from experiments/paths_experiment.gd

extends GameExperiment

func get_nearest_path(target : Vector2) -> ConnectedPath2D:

 var nearest : ConnectedPath2D

 var distance : float

 for node in get_children():

 if not node is ConnectedPath2D:

 continue

 var point = node.curve.get_closest_point(target)

 var point_distance = point.distance_to(target)

 if not distance or point_distance < distance:

 nearest = node

 distance = point_distance

 return nearest

This new method looks through all the ConnectedPath2D nodes in the scene and

finds the one with a point that is closest to the click. This gives us the target path we want

to travel to, so we need to work out a way to get onto that path.

Next, we need to find a list of points that will take the PathFollow2D node from the

path it is on to the path closest to the click target.

Chapter 11 paths and path Followers

217

This happens in a few steps:

 1. We look through each of the connected_paths set for the

starting path.

 2. If one of them is the end (we’re right next to the path we want to

be on), then we get the coordinates between start and end.

 3. If not, we add start and end nodes to the sequence array so that

they are part of the journey the PathFollow2D node will take.

 4. For each of the sequences (there can already be multiple if the

starting path was connected to multiple other paths), we get the

last element and loop through its connected paths.

 5. If we get a connection that is already part of the sequence we’re

inspecting, we ignore it. This is to prevent us from going backward.

 6. We carry on with this process until we find the path closest to

our target.

This is from experiments/paths_experiment.gd

func get_waypoints(start : ConnectedPath2D, end : ConnectedPath2D)

-> Array:

 var sequences := []

 for connected in start.connected_paths.map(func(p): return start.get_

node(p)):

 var pair = [

 start,

 connected,

]

 if connected == end:

 return add_coordinates_to_waypoints(pair)

 sequences.push_back(pair)

 while sequences.size() > 0:

 var sequence = sequences.pop_front()

 var last = sequence[sequence.size() - 1]

Chapter 11 paths and path Followers

218

 for connected in last.connected_paths.map(func(p): return last.

get_node(p)):

 if sequence.has(connected):

 continue

 var appended = sequence + [connected]

 if connected == end:

 return add_coordinates_to_waypoints(appended)

 sequences.push_back(appended)

 return []

add_coordinates_to_waypoints adds metadata to each waypoint, or step in the

journey:

This is from experiments/paths_experiment.gd

func add_coordinates_to_waypoints(route: Array) -> Array:

 var entries := {}

 for path in get_children().filter(func(node): return node is

ConnectedPath2D):

 for connected in path.connected_paths.map(func(connected): return

path.get_node(connected)):

 var nearest_path_point : Vector2

 var nearest_connected_point : Vector2

 var nearest_distance : float

 for path_point in path.curve.get_baked_points():

 for connected_point in connected.curve.get_baked_points():

 var distance = path_point.distance_to(connected_point)

 if not nearest_distance or distance < nearest_distance:

 nearest_path_point = path_point

 nearest_connected_point = connected_point

 nearest_distance = distance

 entries[str(path.get_instance_id()) + "-" + str(connected.get_

instance_id())] = {

Chapter 11 paths and path Followers

219

 "leave": nearest_path_point,

 "enter": nearest_connected_point,

 }

 var new_waypoints := []

 for i in route.size():

 var current = route[i]

 var waypoint = {

 "node": current,

 }

 if i > 0:

 var previous = route[i - 1]

 var key = str(previous.get_instance_id()) + "-" + str(current.

get_instance_id())

 new_waypoints[i - 1].leave = entries[key].leave

 waypoint.enter = entries[key].enter

 new_waypoints.push_back(waypoint)

 return new_waypoints

This code creates four loops to generate a lookup table of all the closest join points

for each direction. entries will contain data resembling

• "path1-path2": { enter: Vector2(1, 1), leave :

Vector2(1, 2) }

• "path1-path3": { enter: Vector2(3, 1), leave :

Vector2(3, 2) }

• "path2-path1": { enter: Vector2(1, 2), leave :

Vector2(1, 1) }

• "path3-path1": { enter: Vector2(3, 2), leave :

Vector2(3, 1) }

leave is the position at which the follower leaves the path that it is on, and enter

is the position at which it enters the new path. We can use this to plot the course from

where the follower is to where it needs to be, via jumps between paths.

Chapter 11 paths and path Followers

220

This transforms a simple array of steps into an array of instructions:

 1. From the current path 1

 2. Go to position x on path 1

 3. Join onto path 2

 4. Go to position y on path 2

 5. Join onto path 3

 6. And so on

All that’s left to do is create a new move_to_point method so that it moves to the

point nearest that last click (if we’re on the right path) or moves to the exit and exits the

current path:

This is from experiments/paths_experiment.gd

@onready var _path_follow := %PathFollow2d as PathFollow2D

var nearest_path: ConnectedPath2D

var nearest_point: Vector2

var waypoints: Array

var speed := 200

func _unhandled_input(event: InputEvent) -> void:

 if event is InputEventMouseButton:

 if event.is_pressed():

 nearest_path = get_nearest_path(get_local_mouse_position())

 nearest_point = get_nearest_point(nearest_path, get_local_

mouse_position())

 waypoints = get_waypoints(_path_follow.get_parent(),

nearest_path)

func get_nearest_point(nearest_path: ConnectedPath2D, target : Vector2) ->

Vector2:

 return nearest_path.curve.get_closest_point(target)

func _process(delta: float) -> void:

 move_to_point(delta)

Chapter 11 paths and path Followers

221

func move_to_point(delta : float) -> void:

 var current_path = _path_follow.get_parent()

 var target_i : int

 var current_i : int

 var points = current_path.curve.get_baked_points()

 var target : Vector2

 if waypoints.size() < 1 or current_path == waypoints.back().node:

 target = nearest_point

 else:

 target = waypoints.filter(func(w): return w.node == current_path).

front().leave

 for i in range(points.size()):

 if points[i].distance_to(target) < 5:

 target_i = i

 if points[i].distance_to(_path_follow.position) < 5:

 current_i = i

 if abs(target_i - current_i) > 3:

 if target_i < current_i:

 _path_follow.progress -= delta * speed

 else:

 _path_follow.progress += delta * speed

 elif waypoints.size() > 0 and current_path != waypoints.back().node:

 for i in waypoints.size():

 if waypoints[i].node == current_path:

 var next_path = waypoints[i + 1].node

 current_path.remove_child(_path_follow)

 next_path.add_child(_path_follow)

 move_to_offset_position(waypoints[i + 1].enter)

func move_to_offset_position(target : Vector2) -> void:

 while target.distance_to(_path_follow.position) > 5:

 _path_follow.progress -= 1

Chapter 11 paths and path Followers

222

As mentioned, if we’re on the right path, then the target position is the curve point

nearest the click. If not, we actually want to move toward where we exit the current path

and enter the next path.

When the follower is near enough to exit the current path, we switch the follower

over to the new path and change its progress until it is close to where it can to enter the

new path.

 Summary
In this chapter, we took a deep dive into how to set up Path2D nodes and their

companion PathFollow2D nodes. We explored how to animate the movement of a

follower on a single path and between paths.

This might seem like a lot of work for little benefit, but it’s a useful trick for the kind of

game we’re going to finish this book building. More on that later.

Chapter 11 paths and path Followers

223

CHAPTER 12

Interaction Systems
Before we wrap up our journey together, I’d like to spend a bit of time talking about how

we enable interactions between players and the world.

In this chapter, we’re going to look at how to handle proximity-based interactions

and how to display interactions when they happen.

It’s a little difficult to show these concepts without the context of a game, because

they are so dependent on the specifics of the game; but we’ll try anyway.

I’ll talk through different code approaches, but I don’t expect you to create a

dedicated experiment for the concepts in this chapter. The approach you take will

definitely depend on the game you're building.

 Managing Interactions
Think back to when we made our own version of Invasion. The player can move through

the map, encountering survivors.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_12

https://doi.org/10.1007/978-1-4842-8795-8_12#DOI

224

Interacting with survivors

The way we coded it was that the survivors would immediately start to follow the

player when they were close enough to each other. We could make the game a lot deeper

by giving the player a choice to rescue or abandon the survivor.

One practical way to do this would be to use Area2D nodes to detect the approach

of the player. If the player is in range of something that can be interacted with, we can

present them with a prompt to let them know that interaction options are available.

Many games do this, including one of my favorites:

Chapter 12 InteraCtIon SyStemS

225

Interacting with things in Forager

In Forager, when you are close enough to interact with something, it gets this square

indicator. Sometimes, you’ll need to press a specific button to begin the interaction.

Other times you’ll be able to whack at the tree or stone with the tool you're holding.

The way I usually code this sort of thing is to have a dedicated node, called

Interactable:

Making a reusable interaction manager

These Area2D-based nodes should have their collision layers and masks set to a layer

dedicated to this purpose.

Chapter 12 InteraCtIon SyStemS

226

Setting an unused layer for interactables

The base Interactable node doesn’t have a collision shape or collision polygon

defined, because this should be set as it is added to another node.

Keeping it simple, we can use a CollisionShape2D:

Chapter 12 InteraCtIon SyStemS

227

Creating an example to assess functionality

If we were to switch to remote view while running code like this, we'd see the Other

Interactable variable is null:

Not collisions…

If we then moved the player so that it collided with the NPC, we’d see the link

created:

Chapter 12 InteraCtIon SyStemS

228

…Until we move the player closer

At this point, we could show that interactions are possible. If the player pressed the

appropriate key, we could even cause the interaction to begin.

The way the player moves closer depends on the game. It could be via keyboard

input, like we had in Bouncy Cars. It could be from click-to-move navigation, like we had

in Invasion. The point is that the collision detection and behavior are no longer in the

players’ scripts, but rather in a dedicated node.

as we saw in Invasion, there is still the issue of CharacterBody2D collision
shape avoidance preventing us from using arbitrary Area2D nodes in this way.
We’d need to change the survivors to not be CharacterBody2D nodes if we
wanted to retrofit this interaction model on to Invasion.

Since we’re using signals, we can attach listeners to run code when the signals are

emitted. A signal for receiving the interaction (from Player → NPC) could show a new

conversation or start some NPC code:

Handling initiated interactions

Chapter 12 InteraCtIon SyStemS

229

If we wanted to show that interaction was possible, even before the player presses a

key to start the interaction, we could add more signals to Interactable:

extends Area2D

class_name Interactable

signal interactable_entered(other)

signal interactable_exited(other)

signal receive_interaction(me)

var other_interactable : Area2D = null

func initate_interaction() -> void:

 if other_interactable != null:

 other_interactable.receive_interaction.emit(self)

func _on_interactable_area_entered(interactable : Area2D) -> void:

 other_interactable = interactable

 interactable_entered.emit(interactable)

func _on_interactable_area_exited(interactable : Area2D) -> void:

 interactable_exited.emit(interactable)

 other_interactable = null

 How This Could Apply to Invasion
Let’s think about how this approach might work if we added it to Invasion. The

screenshot I showed earlier was from my first build of the game and is a bit more feature-

rich than the version we built together.

If it already includes soldiers and when you get close enough to them, they chase you

down. You can escape them by moving to another screen. If they catch you and you have

a survivor already following you, then the survivor freezes in place and you can no longer

rescue them.

Chapter 12 InteraCtIon SyStemS

230

I didn’t have an interaction system in the original version of Invasion, but if I had to

add one, I might try the following:

• Allowing the player to decide whether they rescue survivors they

encounter. Perhaps some survivors will slow the player down or

cost the player something to rescue. Allowing the player to make

the decision to rescue would be more interesting than the survivor

immediately following the player.

• Allowing the player to decide what to do when a soldier catches up

to the player. Could you choose what happens to the survivor? Could

you keep the survivor by giving the solider something else? What if

a currency spawned inside the map and you could trade it for safe

passage?

 Having Conversations
A common way for interactions to happen in games is for the main characters to have

conversations. This could be a detective asking questions during an investigation, or a

boss monologging before their untimely demise.

The original version of Invasion included dialog between the player, survivors, and

soldiers:

Chapter 12 InteraCtIon SyStemS

231

Conversations with survivors

On spawning, I assigned each soldier and survivor with a portrait. When the player

walked in range of a survivor, I’d select and play a random survivor line. When a soldier

caught up to the player, I’d play a random soldier line.

I handled all the dialog with a third-party add-on, called Dialogic. You can find the

add-on and installation instructions over at GitHub. There’s also a companion website,

with links to documentation:

Chapter 12 InteraCtIon SyStemS

https://github.com/coppolaemilio/dialogic

232

Dialogic website

Dialogic has a custom editor, which allows you to preconfigure different

conversations. The interface changes from time to time, but it should resemble

this layout:

Chapter 12 InteraCtIon SyStemS

233

The Dialogic interface

This is where you can create new conversations, with custom portraits, sound, and

decision trees. There’s a lot of depth to this add-on, but I want to focus on the simplest

of setups.

There are some steps to showing dialog:

• You need to create a few characters.

• You need to set up timelines.

• You can start a timeline with the Dialogic.start_timeline method.

I thought it might be useful to show you what I did for the first version of Invasion, so

you have a sense of what’s possible.

 Dialog in Invasion
I followed the first two steps in that list so that I had a full set of characters and some

example timelines for my game:

Chapter 12 InteraCtIon SyStemS

234

Setting up characters and timelines

It’s worth noting that this screenshot is from Godot 3.x and Dialogic 1.x. The

interface and methods with which we start timelines will be different to Godot 4.x and

Dialogic 2.x.

As you can see, there are a ton of soldier profile pictures, around 30 in total. I created

the soldier profile pictures with a red hue and then re-colored them to yellow for the

survivor profile pictures.

The example timelines were a sequence of events and text that model the typical

dialog structures I wanted for Invasion:

Creating example timelines

Chapter 12 InteraCtIon SyStemS

235

Dialogic has methods we can use to play these timelines. Playing a pre-created

timeline is ok, but I wanted to achieve something a bit more dynamic. Fortunately, these

timelines are saved in text files, and inspecting them allowed me to set up dynamic

conversations:

Dynamic conversations

Chapter 12 InteraCtIon SyStemS

236

A lot of this data is what I call “magic variables,” inasmuch as they’re static internal

values that Dialogic understands. The interesting thing is that creating these timelines

dynamically means we can substitute the characters and lines at runtime.

In this version of Invasion, I randomly selected the soldier and survivor profiles

when the soldiers and survivors were added to each room. Remembering what each

survivor looks like means we can show the same profile pictures for them over the course

of a level.

 Summary
I hope you have a better sense of some of the things you can add to your games, which

will help them feel more immersive and interactive. I’m sure they will be useful in the

final game we’re going to make.

Chapter 12 InteraCtIon SyStemS

237

CHAPTER 13

Recreating This War
of Mine
We’ve come a long way, and it has all led to this final project. It’s time to challenge

yourself by building a game on your own. It’s a game you’re capable of building if you’ve

been following along.

In this chapter, I’m going to explain how I would recreate another popular game.

You’re free to follow my guidance, or to deviate if you can think of a better approach or

mechanic for your version.

 This War of Mine
This War of Mine is a game in which you are again trying to survive in a besieged city.

That’s where the similarity with Invasion ends. It’s a beautiful 2D simulation strategy

game, in which you try to feed and comfort the people under your roof.

© Christopher Pitt 2023
C. Pitt, Procedural Generation in Godot, https://doi.org/10.1007/978-1-4842-8795-8_13

https://doi.org/10.1007/978-1-4842-8795-8_13#DOI

238

Surviving in a broken house

It’s a somber and often hopeless setting and a punishing game. You spend much of

the game making the best out of bad situations. Despite the setting, This War of Mine is a

masterpiece of game design and implementation.

The primary resources are food, medical supplies, defensive equipment, and

building materials. The player plays by selecting a character and moving them

somewhere to perform an action.

• Characters can only interact with something when they get close

enough to it.

• Characters can navigate to it by walking along floors and up stairs or

ladders.

Chapter 13 reCreating this War of Mine

239

Navigating the house

There are other types of levels, but I want to focus on this main one because it’s

where you spend most of your time. Each new game begins with a randomly generated

house and a selection of survivors.

The survivors you begin with determine the difficulty you will have. Some survivors

have illnesses or dependencies on rare resources. There are also modes where you get a

random selection of survivors.

Let’s focus on these mechanics for our version:

• Random starting survivors

• Random house generation

• Movement through the house

• Interaction with house repairs, eating food, resting, looting

• Hunger and hope meters for each survivor

You can, of course, choose to implement more or fewer of these. I’ll suggest how I

would do it, but the actual implementation is up to you.

 Getting Set Up
I’d begin by creating the base Screen scene and inheriting from it for the following screens:

• Main menu screen

• Settings screen

Chapter 13 reCreating this War of Mine

240

• New game screen (save slot management)

• Play screen

• End-of-day summary screen

• End-of-game summary screen

This kind of game doesn’t need a win condition. “Survive for the longest time” is

enough of a goal. If you want to limit that at a certain number of days, then you’d also

need a winning summary screen.

You’re already familiar with how to set the UI elements up for this screen. Start

with the usual MarginContainer, CenterContainer, VBoxContainer, and various other

controls. Then, check out themes for your UI elements.

Custom themes are inherited, so you can save the theme as a resource and link it to

every parent control node. The child control nodes will have the theme automatically

applied:

Nested controls inherit themes

I’d use the Screens global, along with screen transitions, as we did when recreating

Invasion. I might also tinker with a different shader effect. I’m no expert, but there are

plenty of shaders to be found on the Godot Shaders website.

We haven’t spent any time talking about how to generate sounds, because it’s not

been the focus of this book. That doesn’t mean sounds are unimportant. At this point,

I’d make some menu music or look for some menu music and sounds to play when the

player clicks on a menu button.

Chapter 13 reCreating this War of Mine

https://godotshaders.com/

241

If you’re looking to use someone else’s sounds, I recommend checking out

these places:

• https://opengameart.org/content/library-of-game-sounds

• https://itch.io/game-assets

You can find a wide selection of free game assets to use on these websites. If you’d

prefer to make your own, then I can recommend

• https://sfxr.me

• https://sfbgames.itch.io/chiptone

• https://famistudio.org

• www.audacityteam.org

If you’re looking for advanced tools, search for “Digital Audio Workbench.” They are

usually quite pricey, though.

You can buy music and sound effects from many websites if you don’t want to make

it. I tend to get my premium artwork, music, and sound effects from Envato’s sites:

• https://audiojungle.net

• https://graphicriver.net

While we’re on the subject, these are tools you can use for making graphics for

your games:

• www.piskelapp.com

• www.aseprite.org (not free, but recommended)

If you’re looking for more free game assets, don’t forget about Kenney’s website.

 Generating Levels
When generating levels, I’d stick to the approach we’ve been using. You can create pixel

art layouts for each different room and render them as tiles or nodes. We don’t need to

plan out the whole level – only uniformly sized rooms that we can randomly place in

room slots.

Chapter 13 reCreating this War of Mine

https://opengameart.org/content/library-of-game-sounds
https://itch.io/game-assets
https://sfxr.me/
https://sfbgames.itch.io/chiptone
https://famistudio.org/
http://www.audacityteam.org
https://audiojungle.net/
https://graphicriver.net/
http://www.piskelapp.com
http://www.aseprite.org
https://kenney.nl/

242

It might be a bit more tricky if you want to misalign the rooms on each floor. In that

case, the layout image should contain options for whole floors.

There’s still plenty you can do to randomize the layout inside each floor. You can use

the collective nodes we learned about while making Invasion. You can even mirror the

floors or rooms.

Into those floor layouts, I’d dedicate a special pixel color for points on a path so that

we can map the walkable area. When drawing the floors or rooms, we could create a

Path2D or a NavigationRegion2D for the characters to move along.

If you are sticking to path-based navigation, this is how that could work:

Navigating along Path2D nodes

We learned about paths in Chapter 11, so refer to that for a refresher. We don’t

actually need to create the links between the Path2D nodes, either. The approach we

learned about finds the closest points between two paths and travels through them.

Some levels in This War of Mine feature rooms that are closed off until a character

clears a path or picks a lock. We can achieve this by creating separate paths blocked by

nearby doors:

Chapter 13 reCreating this War of Mine

https://doi.org/10.1007/978-1-4842-8795-8_11

243

Conditionally available paths

We can define a “door” pixel and a different “path” pixel that creates a path

automatically disabled until an adjacent door is cleared.

While disabled, the path shouldn’t be navigable. I expect you’ll have to bring it into

or out of certain groups and filter on those groups when you’re looking for available

paths to traverse.

More advanced stuff, to be sure.

 Selecting Starting Characters
A big part of what makes This War of Mine replayable is the variety of characters you can

start with and gain.

You could spend a lot of time building this part of the game:

• You can add hope, hunger, and health to each character, but…

• Some characters can have lower or higher starting values for these.

• Feeding certain foods or performing certain activities can increase or

decrease these values.

• Feeding certain addictive resources can cause addiction (like coffee,

cigarettes, etc.).

• Keeping characters with addictions “topped up” can give them more

hope or less hunger than usual.

• Failing to provide these resources to characters can cause their hope

or health to drain faster.

Chapter 13 reCreating this War of Mine

244

There’s no limit on what you can add to these systems; and managing them is a

major focus of This War of Mine. I’d suggest you decide the features you want to add up

front and stick to implementing those.

Scope creep can kill your project at this point.

 Interacting with Objects in the World
As we learned in Chapter 12, we can achieve interaction using Area2D nodes near to each

other. This could be an interactable node attached to the fridge or a door or a bed. If the

characters can move within the range of the object, then they might be able to interact

with it.

This War of Mine sometimes requires characters to “open” containers before being

able to loot them using tools and time.

You might want to think about the conditions in which characters may interact

with things:

• A bed needs to be vacant for a character to sleep.

• A cupboard needs to be openable before a character can loot it.

• You need enough food to be able to cook.

• You need the correct building materials to be able to repair a

broken wall.

All these interactions can contribute to the general well-being of each character:

• Characters that sleep can heal and regain some hope or lose some

tiredness.

• Characters that eat can lose hunger.

• All characters living in the house can gain some hope when one of

them repairs part of the house.

This War of Mine also has randomized events that happen overnight, such as break-

ins and attacks. The more you repair the house, the less frequent or severe they tend to

be. That’s an interesting mechanic!

Chapter 13 reCreating this War of Mine

https://doi.org/10.1007/978-1-4842-8795-8_12

245

 Ending the Day
After a set amount of time, the day should end. This is a good time to remind the player

how they are doing and to start random events or allow characters to leave the house.

We should show an end-of-day screen. This can display days survived, remaining

food, and a general summary of the health and hope of the current characters.

You can decide whether to deduct a fixed amount of hunger at this point, or do so

during the day. The length of the day is also something you get to decide, since it won’t

match the passage of time in the real world.

 Deciding When to End the Game
There are many ways you could decide the player has won or lost the game. I’d go with

the following set of criteria:

• When a character’s hope gets to zero → they leave in the night.

• When a character’s health gets to zero → they die.

• When there are no more characters in the house → the game is over.

We can determine the final score based on how long the characters have survived for

and how many good things they did while in the house. When characters interact with

each other in a positive way, or do things to enrich the lives of other characters, we can

count this as a good thing.

This “good things” system might be overkill. I’m throwing ideas out there for you to

think about.

All that is to say, the game must end. When it does, you can show the game-over

summary screen.

 Unlocking New Levels and Characters
You can encourage players to replay your game by allowing them to unlock new levels

and characters after having played a certain way or for a certain amount of time.

The point isn’t to force them to grind. It should be a nice reward for immersing them

in a dystopia; and it will allow them to try new styles of play.

Chapter 13 reCreating this War of Mine

246

You can make the unlocked levels larger or longer or with more random events. You

can even represent these new levels on an interactive map:

Allowing the player to choose the challenge

 A Note About Mobile Game Development
It’s no accident that the games we have built could mostly work on a touch screen. I am

a fan of building games that can work well on a touch screen because those are the kinds

of games I like to make for my kids.

You can build this game without ever needing the player to type something, or

otherwise press a button on a keyboard. If you manage to keep this approach, you’ll also

be able to publish your game to Android and Apple tablets and phones.

Chapter 13 reCreating this War of Mine

247

I have published many games to these platforms, and it’s a wonderful feeling being

able to play a game you’ve made on a mobile device you own.

It’s also why I have used MarginContainer as the main node for my screen scenes.

You can adjust the margins of MarginContainer to account for phone buttons,

notification areas, and notches.

It’s a bit more work to support different screen sizes, but it’s worth it for the joy

players will get from being able to play your games on the devices they have on hand.

 Taking It One Step at a Time
It’s easy for me to sit here and tell you how I would build this game, when you are the one

who has to build it. Indie game development can sometimes feel like you’re wearing all

the hats and nobody is helping.

Take things one step at a time.

Start with a small scope, create a task list, give yourself a deadline. Then, begin the

process of cutting scope or deprioritizing non-essential features so that you can launch

on time.

For every game I’ve published, five more concepts have died. I’m talking as much to

myself as I am to you. Keep at it and you can realize your dreams of making games you

and your friends and family can enjoy.

 Thank You for Reading This Far
It’s time I got going. I want to thank you for reading through this book. I hope it’s been as

much fun for you to follow along as it was for me to write. This was my first book as an

indie game developer, so I’m sure there is room for improvement.

I want to echo what I said before. If you have questions, or things aren’t working,

then please reach out to me and ask questions. I love talking about this stuff, and it’s the

least I can do to point you in the right direction.

Twitter: assertchris

Email: cgpitt@gmail.com

Chapter 13 reCreating this War of Mine

https://twitter.com/assertchris
cgpitt@gmail.com

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Hand-Crafted Content vs. Procedural Content
	Example: Limbo
	Procedural Content Generation
	Example: Oxygen Not Included
	How Much of Each?
	Example: Diablo 2
	Where We Go from Here

	Chapter 2: Generating with Nodes
	Setting Up a New Project
	Loading Experiments
	Creating Nodes via Script
	Randomizing Behavior
	Creating Realism with Randomization
	Summary

	Chapter 3: Generating with Tiles
	Creating Tile Sets
	Modifying Tiles with Code
	Using Terrains
	Using Terrains with Code
	Summary

	Chapter 4: Recreating Sokoban
	Creating Levels
	Selecting a Level
	Switching Screens
	Globals and Other Mischief

	Drawing Levels
	Drawing Nodes

	Moving the Player
	Avoiding Closed Doors
	Moving Crates

	Winning a Level
	Summary

	Chapter 5: Designing Levels in Pixel Art
	Creating Pixel Art
	Converting Pixel Art to a Grid
	Flipping Layouts
	Combining with Nodes and Tile Maps
	Summary

	Chapter 6: Creating a Seeding System
	A New Experiment
	Generating Easier Seeds
	Summary

	Chapter 7: Recreating Bouncy Cars
	Getting Set Up
	Creating a Seed Screen
	Generating Maps
	Drawing the Map
	Drawing the Players
	Calculating Waypoints
	The Right Way to Do This

	Moving the Players
	Warning the Players About Directions
	Summary

	Chapter 8: Navigating in Generated Levels
	Getting Set Up
	Adding Basic Movement
	Adding Navigation to Tile Maps
	Adding Obstacle Nodes
	Merging Polygons
	Summary

	Chapter 9: Collective Nodes in Generated Maps
	Refreshing Our Memory
	Selecting the Appropriate Node(s)
	Summary

	Chapter 10: Recreating Invasion
	Getting Set Up
	Screens
	Transitions
	Adding Shaders

	Planning Room Generation
	Tile Map
	Exits
	Sanctuaries
	Arrows
	Spawns
	The Remaining Nodes

	Generating One Room
	Generating Many Rooms
	Hiding Invalid Arrows and Sanctuaries

	Moving Around in the Rooms
	Transitioning to Neighboring Rooms
	Spawning Survivors
	Rescuing Survivors
	Taking Things Further
	Summary

	Chapter 11: Paths and Path Followers
	Defining Paths
	Moving Along the Path
	Moving Between Paths
	Summary

	Chapter 12: Interaction Systems
	Managing Interactions
	How This Could Apply to Invasion

	Having Conversations
	Dialog in Invasion

	Summary

	Chapter 13: Recreating This War of Mine
	This War of Mine
	Getting Set Up
	Generating Levels
	Selecting Starting Characters
	Interacting with Objects in the World
	Ending the Day
	Deciding When to End the Game
	Unlocking New Levels and Characters
	A Note About Mobile Game Development
	Taking It One Step at a Time
	Thank You for Reading This Far

